BUILDING GEOSPATIAL INDICATORS TO MONITOR PROGRESS IN REGIONS AND CITIES TOWARDS SUSTAINABLE DEVELOPMENT AND CIRCULAR ECONOMY

21 October 2021

Rudiger Ahrend, Head of the Economic Analysis, Data and Statistics Division

- How the OECD helps governments in their localised data work?
- Using geospatial data to define cities
- Geospatial tools to bridge data gaps
- Measuring the distance to the SDGs in regions and cities
- The OECD Laboratory for Geospatial Analysis

Using geospatial data for monitoring progress with SDGs and the circular economy

To adequately inform policy making, data need to:

- 1. Capture the scale of people's everyday lives
- 2. Help to assess results of policies and monitor progress across places and over time
- Support an evidence-based dialogue across levels of government and sectors of society

How the OECD helps governments in their localised data work?

What is a city? Using geospatial data to define cities Administrative boundaries vs. Functional urban areas

Many cities do not match their respective administrative boundaries

One-fifth of metropolitan areas in the world are shrinking

© OECD | Centre for Estrepreneterby 2026, Regions and Eiverla? A Frew perspective to urbanisation. OECD Publishing, Paris.

Geospatial sources to bridge data gaps

Examples of modelled indicators

- Global Burden of Disease (GBD):
 - Exposure to air pollution, PM2.5

- Global Human Settlement Layer (GHSL grids):
 - Built-up area growth relative to population growth

Climate Change Initiative Land Cover (CCI-LC):

Change in tree cover

<u>Global Database of Power Plants (geo-localised data):</u>

Percent of electricity that comes from coal

 <u>Emission Database for Global Atmospheric Research (EDGAR grid)</u>: GHG emissions by sector

Despite improvements in the last decade, air pollution in cities remains high

Air pollution levels in functional urban areas Levels of PM2.5 in μ/m^3 , 2019, with change between 2010 and 2019

World trends in air pollution, 2010-19:

- In 30 OECD countries at least one city with air pollution above WHO recommended levels
- Air pollution levels have decreased since 2010, except in low- and lower-middle income countries
- Highest concentration of PM2.5 in lowermiddle income countries' cities (66 μ/m3 of PM2.5)

In one-third of cities with high levels of built-up area per capita, land consumption keeps increasing faster than population

Land consumption relative to population growth in FUAs

Growth rate of built-up area minus growth rate of population, 2000-15

Large metropolitan areas are experiencing higher tree cover loss than other areas, particularly in North America and Australia

- Tree cover area has declined in more than half of functional urban areas between 1992 and 2018 (3pp reduction on average)
- Decline in tree cover happened for almost three quarters of the metropolitan areas over one million inhabitants.

Emissions per capita vary significantly across cities

Estimated GHG emissions per capita by metropolitan area size

Tonnes of CO2-equivalent emissions per capita, functional urban areas, 2018

Large metropolitan areas tend to have lower production-based emissions per capita than other cities, mainly due to efficiency gains in the transport sector

OECD Visualisation tool to measure the distance to the SDGs in regions and cities

oecd-local-sdgs.org

Visualise the index by goal

Click on the logo to see the index, click on learn more to see the indicators

The OECD Laboratory for Geospatial Analysis

The OECD Laboratory for Geospatial Analysis (aka Geospatial Lab) is a platform that proposes to connect people from different organisations, including academia, government agencies, the private sector, and Statistical Offices to develop and disseminate policy-relevant analyses based on geospatial information

https://www.oecd.org/regional/regional-statistics/geospatial-lab.htm

Thank you!

Twitter: @OECD_local LinkedIn: www.linkedin.com/company/oecd-local Website: www.oecd.org/cfe

Visit the OECD Statistical Atlas for Regions and Cities https://regions-cities-atlas.oecd.org/

Website: <u>www.oecd.org/regional/rural-</u> development/rural-service-delivery.htm

Leveraging open data from Ookla

Users conduct speed tests automatically or deliberately

(speedtest.com)

- Aggregated to web Mercator tiles at zoom level 16 (approximately 610 by 610 meters at the equator).
- GHS Settlement Model grids (1 by 1 km cells) according to the degree of urbanisation

Rural areas consistently lag behind in terms of download speed, though urban-rural gap different across countries

Gaps in fixed download speeds experienced by users, by degree of urbanization (2020)

Deviation from the national average (in percentage points)

Fine-granular data allows zooming-in within countries (at different scales)

Ookla tests on fixed download speed, 2020, Q4

- Hamburg and Bremen 15% higher speed than national average
- Thuringia and Saxony-Anhalt more than 30% lower speed than national average

OECD calculations based on Speedtest[®] by Ookla[®] Global Fixed and Mobile Network Performance Maps. Based on analysis by Ookla of Speedtest Intelligence[®] data for 2020Q4.

Download speeds are higher in denser places

OECD calculations based on Speedtest[®] by Ookla[®] Global Fixed and Mobile Network Performance Maps. Based on analysis by Ookla of Speedtest Intelligence[®] data for 2020Q4.

How do we feed our databases?

The Regional and Metropolitan databases

Indicators are compiled primarily from official statistics. In cases where the information is not available, the indicators are modelled using a variety of techniques

Official Statistics

Obtained from National Statistical Agencies

Modelling techniques

• Estimated based on unconventional sources (e.g. GIS techniques, big data, satellite imagery, raster files, etc.)