Impact of Newspace and Data Revolution

Krystal Wilson, Director of Space Applications Programs
Secure World Foundation

Amsterdam, Netherlands
April 3, 2019
Secure World Foundation is a *private operating foundation* that promotes cooperative solutions for space sustainability

- Why **space sustainability**? Increasing reliance on space assets coupled with potentially destabilizing trends

- **Our mission:** To work with governments, industry, international organizations, and civil society to develop and promote ideas and actions to achieve the secure, sustainable, and peaceful uses of outer space benefiting Earth and all its peoples

- The Foundation acts as a **research body, convener and facilitator** to examine key space policy topics
Activities and Partners

Promoting Cooperative Solutions for Space Sustainability

Outreach

Events

Publications

UNITED NATIONS
Office for Outer Space Affairs

IAF
International Astronautical Federation

GOCE
Group on Earth Observations

WMO
World Meteorological Organization

NOAA
National Oceanic and Atmospheric Administration

CEOS
Committee on Earth Observation Satellites

ORF
Observer Research Foundation

SPACE GENERATION ADVISORY COUNCIL

Geospatial World Forum

www.swfound.org
Promoting Cooperative Solutions for Space Sustainability

Trends in space

- Space is becoming more **globalized**
 - Growing access to space technology
 - Growing interest by many countries in utilizing space for national benefits (socioeconomic development, prestige, national security)

- Space is becoming more **diverse**
 - Space began as part of competition between governments (US and USSR)
 - Influx of technology, talent, and capital from other sectors (IT, analytics, etc)

How do we manage the influx of new actors and growth in space activities to ensure long-term sustainability of space?

How can SDG implementers leverage on the data revolution and newspace movement?
More International

Source: Adapted from IDA Global Trends in Civil and Commercial Space Study
New National Entrants

Countries Deploying the Most Government Smallsats, 2012 - 2018

- USA: 120
- China: 44
- Russia: 43
- Japan: 11
- India: 7
- Germany: 6

<table>
<thead>
<tr>
<th>5 or Fewer Government Smallsats Deployed</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Korea</td>
</tr>
<tr>
<td>Ecuador</td>
</tr>
<tr>
<td>Australia</td>
</tr>
<tr>
<td>Indonesia</td>
</tr>
<tr>
<td>European Space Agency</td>
</tr>
<tr>
<td>Spain</td>
</tr>
<tr>
<td>Canada</td>
</tr>
<tr>
<td>Kazakhstan</td>
</tr>
<tr>
<td>Israel</td>
</tr>
<tr>
<td>Turkey</td>
</tr>
<tr>
<td>Iran</td>
</tr>
<tr>
<td>Peru</td>
</tr>
<tr>
<td>Brazil</td>
</tr>
<tr>
<td>Greece</td>
</tr>
<tr>
<td>Algeria</td>
</tr>
<tr>
<td>Taiwan</td>
</tr>
<tr>
<td>North Korea</td>
</tr>
<tr>
<td>Vietnam</td>
</tr>
<tr>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Belarus</td>
</tr>
<tr>
<td>UAE</td>
</tr>
<tr>
<td>Pakistan</td>
</tr>
<tr>
<td>Italy</td>
</tr>
<tr>
<td>Philippines</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>Colombia</td>
</tr>
<tr>
<td>Poland</td>
</tr>
<tr>
<td>Malaysia</td>
</tr>
<tr>
<td>United Kingdom</td>
</tr>
</tbody>
</table>

Source: Bryce Space and Technology “Small Satellites By the Numbers 2019”
More Diverse

Share of Satellites Launched per Decade, by Operator Type

Commercial Satellites

Operational

<table>
<thead>
<tr>
<th>Company</th>
<th>Type</th>
<th>Number</th>
<th>Size (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airbus D&S</td>
<td>Optical</td>
<td>4</td>
<td>1,000</td>
</tr>
<tr>
<td>DigitalGlobe</td>
<td>Optical</td>
<td>5</td>
<td>2,800</td>
</tr>
<tr>
<td>MDA</td>
<td>Radar</td>
<td>1</td>
<td>2,300</td>
</tr>
<tr>
<td>DMCii</td>
<td>Optical</td>
<td>6</td>
<td>450</td>
</tr>
<tr>
<td>ImageSat</td>
<td>Optical</td>
<td>3</td>
<td>350</td>
</tr>
<tr>
<td>UrtheCast</td>
<td>Optical and radar</td>
<td>24</td>
<td>1,400</td>
</tr>
<tr>
<td>Astro Digital</td>
<td>Optical</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Axelspace</td>
<td>Optical</td>
<td>50</td>
<td>95</td>
</tr>
<tr>
<td>BlackBridge (Planet)</td>
<td>Optical</td>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>BlackSky Global</td>
<td>Optical</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>Capella Space</td>
<td>Radar</td>
<td>30</td>
<td>TBD</td>
</tr>
<tr>
<td>XpressSAR</td>
<td>Radar</td>
<td>4</td>
<td>TBD</td>
</tr>
<tr>
<td>GeoOptics</td>
<td>Radio occultation</td>
<td>24</td>
<td>115</td>
</tr>
<tr>
<td>HawkEye360</td>
<td>RF mapping</td>
<td>21+</td>
<td>TBD</td>
</tr>
<tr>
<td>Hera Systems</td>
<td>Optical</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>ICEYE</td>
<td>Radar</td>
<td>50</td>
<td><100</td>
</tr>
<tr>
<td>PlanetIQ</td>
<td>Radio occultation</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Planetary Resources</td>
<td>Optical</td>
<td>10</td>
<td>TBD</td>
</tr>
<tr>
<td>Planet</td>
<td>Optical</td>
<td>100+</td>
<td>3</td>
</tr>
<tr>
<td>Spire Global</td>
<td>Optical</td>
<td>25+</td>
<td>35</td>
</tr>
<tr>
<td>Terra Bella (Planet)</td>
<td>Optical</td>
<td>24</td>
<td>120</td>
</tr>
</tbody>
</table>

Small Satellites (<200 kg)

<table>
<thead>
<tr>
<th>Company</th>
<th>Type</th>
<th>Number</th>
<th>Size (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planet</td>
<td>Optical</td>
<td>100+</td>
<td>3</td>
</tr>
<tr>
<td>Spire Global</td>
<td>Optical</td>
<td>25+</td>
<td>35</td>
</tr>
</tbody>
</table>

Commercial Operators Launching the Most Smallsats, 2012 - 2018

- **Planet** - 359 launches
- **Spire Global** - 97 launches

Source: Bryce Space and Technology “Small Satellites By the Numbers 2019”

Launched in 2018: More than 250

Forecast: Up to 2800 micro/nanosatellites to launch in the next 5 years

Mega-constellations: 16,000+ planned satellites, many not included in above
How does this predicted shift affect efforts for supporting SDGs?
How do we take advantage of these trends for the SDGs?
Key Questions

Who are the decision makers?

- No SDG contains goals that weren’t already being worked on by professionals around the world
- Need to define and think broadly from citizens to organizations to governments
- Most potential end users are unaware of the possibilities

How are we delivering it?

- What happens when a potential end user googles their specific topic?
- Who isn’t represented in this room? Are these technologies and data represented in other rooms?
- Are resources being developed that can be understood and acted upon by non-geospatial professionals? What about new communication technologies?
Stakeholders

Space Infrastructure
- Space Agencies
- Manufacturers
- Satellite Operators
- Launch
- Investors

Downstream
- Analytics Companies
- Nat’l Statistics Agencies
- Nat’l EO Agencies
- Ground Segment
- Academia
- Hardware vendors

End Users
- Gov’t Service Agencies
- NGOs
- Donors
- INGOS
- Local civil society
- Contractors
Awareness and use of Earth observation and other space-derived technology is increasing but wide-spread adoption is still slow. Why?

- Lack of technical knowledge or training
- Focus on traditional areas of application
- “Intertia”
- Donor skepticism
- Time and money
- Data set integration concerns including privacy
- Open data “vs.” Commercial data
- Too much data, not the right data
- Licensing
What happens when you Google it?

Food Security

Land Degradation
Moving Forward

- More general resources which outline the “what” and the “how”
- Increased collaboration among a wider range of stakeholders
- More support for sector cross-training, both academically and professionally
- Better engagement with media
- Don’t let “perfect” or “most efficient” be the enemy of “good” and “effective”
- Leveraging corporate social responsibility principles
- Take advantage of existing skills sets and synergies
The Summit for Space Sustainability will be a high-level multi-day event focused on developing solutions for space sustainability. It will encompass a cross-section of space sustainability issue areas, including:

- Space debris
- Space situational awareness
- Space law and policy
- Space governance
- National and international space security
- Use of space for human and environmental security on Earth
• **Goal:** Create a publication that provides an overview of fundamental principles, laws, norms, and best practices for safe, predictable, and responsible activities in space.

• **Two specific audiences:**
 – Countries developing space programs and/or having to oversee and regulate their first satellites
 – Universities and start-up companies that are developing/operating satellites
Contents

• **Chapter 1** – International framework
• **Chapter 2** – National policy and administration
• **Chapter 3** – Responsible space operations

Case Study:

The United Kingdom Satellite Applications Catapult

The United Kingdom Satellite Applications Catapult was established by the government of the United Kingdom (UK) in May 2013 with the goal of creating economic growth in the UK through supporting the development, commercialization, and use of satellite applications. According to its Delivery Plan 2015–2020, the Catapult (Figure B) aims to promote satellite application and technology development and help domestic industry “bring new products and services more rapidly to market.” The Satellite Applications Catapult is one of 11 “Catapults” operating in the UK, each focusing on different technologies and application areas. The Catapult operates as a private, not-for-profit research organization. It is governed by a board, which includes representation from the United Kingdom Space Agency (UKSA) and from Innovate UK—a government agency focused on fostering technology and economic development.

IN-DEPTH ANALYSIS: REMOTE SENSING POLICY AND ADMINISTRATION

Remote sensing satellites have continually sensed Earth for more than four decades, yielding a valuable repository of data about the planet which has applications in areas as far-reaching as health, climatology, and urban planning. Given its strong linkages to socioeconomic development, space-based remote sensing is a key area of activity for new and established space actors alike. In light of this, remote sensing is a useful case study highlighting the interaction between public policy and public administration and illustrates some of the approaches different countries have taken to managing this kind of activity. Additionally, new trends in remote sensing activities, especially by non-governmental actors, illustrate larger policy transformations that are useful for new space actors to consider.

Remote Sensing Policy

Consistent with the main elements of public policy described in the beginning of this chapter, remote sensing policies primarily seek to:

- identify objectives and priorities guiding the acquisition of data about the planet;
Questions?

Thanks.

kwilson@swfound.org