Grammar-based Machine Learning for Automatic 3D BIM Reconstructions

Dieter Fritsch & Susanne Becker
1. Motivation
2. Indoors Building Information Modeling
3. Facade Grammar and Facade Reconstruction
4. Pilot Studies - Grammars & Automated BIM
5. Results
6. Conclusions and Outlook
1. Motivation – ASCII-like 3D City Model Refinements (outdoors and indoors)

- Detailed facade models (BIM LoD3)
 - Explicit facade geometry
 - Semantic information

- New Applications (BIM LoD4)
 - Computer graphics, virtual reality
 - Detailed urban planning
 - 3D navigation
 - Environmental simulations
 - Energetic calculations
 - Finite Elemental Analysis
 - Building Information Models (BIM)
 - …
2. Indoors BIM Modeling
Based on Input Data (given, image-based, range-based)

- Using available architectural drawings or 2D plans
 - Promising results
 - Subject to change
 - Not always accessible to public

Dosch et al., 2000

Peter et al., 2013
3. Grammars & BIM Facade Reconstructions

The Machine Learning Algorithm

- Cell decomposition
 - Extraction and modeling of facade structures using point clouds (LiDAR or Imagery)

- Knowledge inference
 - Detection of recurrent features and structures
 - Rule derivations

- Knowledge propagation
 - Hypotheses for verification and make-up
 - Synthetic facade structures

Cell decomposition

Knowledge inference

Knowledge propagation

Data driven

Model driven

Facade grammar
3. The Facade Grammar

- For the refinement of LOD2 building models
- Based on:
 - Lindenmayer systems (conditions, context, probabilities)
 - Split grammar (tessellation of the facade in disjunct elements)
- Individual facade grammars can be automatically derived

- $G^{Facade}(V,T,P,F)$:
 - V ... Non-terminals
 - T ... Terminals
 - F ... Axiom
 - P ... Production rules
 - Split rules
 - $(F \rightarrow W^*, \ W \rightarrow WGW)$
 - Instantiation rules

- Geometry tile G, g_i
- Wall tile W, w_i
3. The Façade Grammar - Searching for Terminals

Knowledge Inference

• Spatial Partitioning
 • Segment the facade into floors by horizontal partition planes
3. The Façade Grammar - Searching for Terminals

Knowledge Inference

• Spatial Partitioning
 • Segment the facade into floors by horizontal partition planes
 • Divide each floor into tiles by vertical splits along the geometry borders
3. The Façade Grammar - Searching for Terminals

Knowledge Inference

- **Spatial Partitioning**
 - Segment the facade into floors by horizontal partition planes
 - Divide each floor into tiles by vertical splits along the geometry borders
 - *Wall tiles, geometry tiles*
 - Classification of the tiles
4. Pilot Studies - BIM Facade Application
4. Pilot Studies – BIM Façade Data Collection

- Facade is covered by imagery collected from 32 stations.
- At each station 3 images were collected
- Time for data collection <15min
4. Pilot Studies – BIM Facade Results (LoD3)

image-based 3D point cloud (close-range photogrammetry)

Rotebühlbau, Stuttgart
4. Pilot Studies – BIM Indoors (LoD4)

VGI and Grammar for 3D BIM

• Application scenario:
 • Generate **hypotheses for indoor geometries for the 2nd floor** of the CS building (Uni Stuttgart) using **erroneous and incomplete trajectories and grammars**

 ▪ Input Data
 ▪ **Trajectories**: 250 odometer tracks within the 2nd floor
 ▪ **Grammar**: high-level grammar automatically derived from a floor plan of the 1st floor
 ▪ **3D building hull**: LOD2 Model of Stuttgart City Surveying office
4. Pilot Studies – BIM Indoors (LoD4)

Grammar Application - Results

- Procedural modeling processes
 - Generation of weak floor segments (Axiom)
 - Application of a **L-System** onto the Axiom
 - Application of a **Split- Grammar** onto non-floor segments
- Comparison with reality (131 rooms)
 - **Pure data-driven**: 29 rooms
 - **Split Grammar appl. onto data-driven Floors**: 92 rooms
 - **Split Grammatik appl. onto completed floors L-System**: 116 rooms
- Average error of the room width: ~2m
4. Pilot Studies – BIM Indoors Grammar

L-System for Modeling Hallways

• Production rules

- \(\omega: R(\text{ACTIVE})?I(\theta_{\text{in}}, \text{UNASSIGNED}) \)
- \(p_1: R(\text{mode}) > ?I(\theta, \text{state}): \text{state}==\text{SUCCEED} \& \& \text{mode}==\text{ACTIVE} \)

 \[
 \begin{align*}
 \text{LayoutSetting}(\theta, \text{mode}) \text{ sets } \theta_i[0-4] \rightarrow +(\theta, \text{angle})F(\theta, \text{len}) \\
 B^h(\text{ACTIVE}, \theta_p[1]) B^h(\text{ACTIVE}, \theta_p[2]) B^v(\text{INACTIVE}, \theta_p[3]) \\
 B^v(\text{INACTIVE}, \theta_p[4]) R(\text{ACTIVE})?I(\theta_p[0], \text{UNASSIGNED})
 \end{align*}
 \]
- \(p_2: R(\text{mode}) > ?I(\theta, \text{state}): \text{state}==\text{FAILED} \rightarrow \varepsilon \)
- \(p_3: B^h(\text{mode}, \theta): \text{mode}==\text{ACTIVE} \rightarrow [R(\text{mode})?I(\theta, \text{UNASSIGNED})] \)
- \(p_4: ?I(\theta, \text{state}): \text{state}==\text{UNASSIGNED} \)

 \[
 \begin{align*}
 \text{ConsistencyConstraints}(\theta) \text{ adjusts } \text{state}, \theta \rightarrow ?I(\theta, \text{state})
 \end{align*}
 \]
- \(p_5: ?I(\theta, \text{state}): \text{state}!==\text{UNASSIGNED} \rightarrow \varepsilon \)
- \(p_6: B^v(\text{mode}, \theta): \text{mode}==\text{INACTIVE} \)

 \[
 \begin{align*}
 \text{ActivationControl}(\text{sets mode}) \rightarrow B^v(\text{mode}, \theta)
 \end{align*}
 \]
- \(p_7: B^v(\text{mode}, \theta): \text{state}==\text{SUCCEED} \& \& \text{mode}==\text{ACTIVE} \)

 \[
 \begin{align*}
 \rightarrow [Q(\text{mode})?I(\theta, \text{UNASSIGNED})]
 \end{align*}
 \]
- \(p_8: Q(\text{mode}) > ?I(\theta, \text{state}): \text{state}==\text{SUCCEED} \& \& \text{mode}==\text{ACTIVE} \)

 \[
 \begin{align*}
 \text{LayoutSetting}(\theta, \text{mode}) \text{ sets } \theta_i[0-3] \rightarrow +(\theta, \text{angle})U(\theta, \text{len}) \\
 B^h(\text{ACTIVE}, \theta_p[1]) B^h(\text{ACTIVE}, \theta_p[2]) B^v(\text{INACTIVE}, \theta_p[3]) \\
 R(\text{ACTIVE})?I(\theta_p[0], \text{UNASSIGNED})
 \end{align*}
 \]
- \(p_9: Q(\text{mode}) > ?I(\theta, \text{state}): \text{state}==\text{FAILED} \rightarrow \varepsilon \)
4. Pilot Studies - Iterative Learning and Verification

Results

• Seamless transition from LOD3 to LOD4

 ▪ Grammar update:

 ▪ Enhanced split grammar

 Enhanced split grammar:

 - \(R_a^{Single} : Space \rightarrow Split^{Space}(n_a \mid d_a) \)
 - \(R_b^{Single} : Space \rightarrow Split^{Space}(n_b \mid d_b) \)
 - \(R_c^{Single} : Space \rightarrow Split^{Space}(n_c \mid d_c) \)
 - \(R_d^{Single} : Space \rightarrow Split^{Space}(n_d \mid d_d) \)
 - \(R_e^{Single} : Space \rightarrow Split^{Space}(n_e \mid d_e) \)

 ▪ \(R_{bc}^{String} : Space \rightarrow Split_c^{Space} \odot \square \)

 ▪ \(R_{cb}^{String} : Space \rightarrow Split_b^{Space} \odot \square \)

• Verification of 3D model

Susanne Becker
4. Pilot Studies - Iterative Learning and Verification

Results

• Seamless transition from LOD3 to LOD4
 - Grammar application:

 Susanne Becker
5. Conclusions and Outlook

Grammar was proven by the Pilots and 2 DFG ResearchProjects (just completed) – excellent reviews!

- Automatic approach for the reconstruction of complete 3D facade and BIM models from dense point clouds is working!
 - Point cloud generation using range and image data collections
 - Automatic inference of individual grammars representing building-specific characteristics
 - Generation of realistic building structures even in areas with inaccurate, noisy or incomplete sensor data
 - Synthetic facade structures for facades not covered by any sensor data
- Extension and abstraction of the building scenario to city models
 - Hierarchical graph-based modeling structure for urban environments
 - Network of geometrical and topological relationships
 - facilitates the analysis and preservation of geometrical consistency
 - allows for the derivation and modelling of higher-order dependencies

High R&D potential in grammar-based modeling of geometric and semantic building information
5. Conclusions and Outlook – R&D Potential

Hierarchical Graph-based Structure for BIM and Urban Environments