Integrating geospatial big data solutions

Dr. Ir. Frank Cremer
Geomatik
The Hague, The Netherlands

Muktha Muralee PDEng
MFasize
The Hague, The Netherlands
Port of Rotterdam
Key figures (per year)

• 35,000 ship visits with 400 million ton cargo
• 80,000 barge visits
• 7,500,000 trucks (25,000 per day)

Over 40 kilometers
Challenge

• Need to make strategic decisions on
 • Infrastructure/assets
 • Safety
 • Environment

• Available data:
 • Low level, e.g. AIS ship positions
 • High volume: 10 million records/day
 • High velocity: updates every 10 s

• Information in hand:
 • Business Integrators
 • Data Analysts
High level architecture
Detailed level architecture

Spark/mapreduce jobs for:
• Creating tracks
• Calculating passages (line crossings)
• Calculating port/area/berth visits
• Estimating (sea) ship emissions
Emission calculations in Hadoop

- **Position data**
- **Track builder**
 - ship 1, visit #1
 - ship 2, visit #2
- **Visit reporter**
 - Area 51
 - Enter: 12:47
 - Leave: 13:18
- **Emission calculator**
 - Ship 1, visit #1
 - Emission 15 g
 - Ship 2, visit #2
 - Emission 20 g
 - Area 51
 - Emission 3 g
- **Area-based emissions**
- **Point emissions**
Sample results

Traffic Density

Tracks

Emissions
Future ideas

• Prediction of (inland) ship arrivals
• Predictive maintenance – e.g. dredging on demand
• Monitoring of individual containers
Conclusions

• Flexible framework for providing actionable insights
 • Raw data processed in Hadoop
 • Results available through various systems
 • Data analysts can create new insights
 • Added to the Hadoop processing

Strategic decisions are made: involving millions of euros