CityGML-based SDIs
Implementation requirements and examples

Geospatial World Forum, May 23-26, 2016, Rotterdam
Dr. Lutz Ross | lross@virtualcitysystems.de
CityGML-based SDIs
Implementation requirements and examples
What is CityGML?

- **International OGC standard** for semantic 3D city models

- Represents **all relevant topographic object types** of a city (buildings, vegetation, water, terrain, traffic, etc.)

- ISO 19100 compliant, extensible **information model** and GML-based **exchange format**

- CityGML represents the city objects with **3D geometry, 3D topology, semantics** and **appearance**
Rich in semantics compared to pure 3D graphics and 3D map formats

Objects know **WHAT** they are and **WHERE** they are

Hierarchical structure of features and their components

Required for sophisticated **queries, simulations** and **analyses**
Five Levels-of-Detail suitable to many different applications fields

Every city object can be represented in each LOD simultaneously

Source: Filip Biljecki, TU Delft
Why CityGML?

Marseille, France

- Terrain Model
- Building
- Land Use
- Vegetation Object
- City Furniture
- Road
- Traffic Area
- Water Body

Geospatial World Forum 2016
CityGML timeline

- **2002**: First CityGML draft by SIG 3D
- **2006**: 0.3.0 (OGC Discussion Paper)
- **2007**: 0.4.0 (OGC Best Practice Paper)
- **2008**: 1.0.0 (OGC Encoding Standard)
- **April 2012**: 2.0.0 (OGC Encoding Standard)
CityGML world map

Based on a survey from 2010
CityGML-based SDIs

Implementation requirements and examples
Implementation requirements

- Robust and scalable data storage
- Update and maintenance workflows
- Easy-to-use publishing/visualization of data
- Integration with OGC web services and existing infrastructure
Implementation requirements

Update/maintain → Store → Distribute

CityGML

OGC Service
"The award winning 3D City Database is a free 3D geo database to store and manage virtual 3D city models on top of a standard spatial relational database. The database model contains semantically rich, hierarchically structured, multi-scale urban objects facilitating complex GIS modeling and analysis tasks, far beyond visualization."

http://www.3dcitydb.org
What is the 3D City Database?

- CityGML data management solution
 - CityGML 2.0 compliant relational schema for 3D city models
 - Realized on top of established spatial database systems (PostgreSQL/PostGIS, Oracle)
 - Oracle Spatial Excellence Award 2012

- Efficient database tools
 - Loading/extracting massive CityGML-based 3D city models
 - Export of KML/COLLADA/gITF visualization models

- Open Source project under LGPL 3.0
CityGML, 3D City Database and tools
OGC Web Feature Service (WFS) interface

- **OGC WFS 2.0** service interface for the 3DCityDB
 - Live queries to the city model using spatial and thematic filters
 - Transactions (insert, update, delete) on the data
 - Open Source (WFS Simple conformance class)

- **Open and standardized**
 - CityGML used as data exchange format
 - Vendor-neutral data workflows and processes
 - WFS abstracts from the data backend

- **Web-based data management** of the 3D city model data
Query your City Model
3D City Database timeline

- Work on CityGML 3.0 started in 2013
- 3D City Database timeline 2005-2017
- CityGML versions: 0.3, 0.4, 1.0, 2.0, 3.0
- Oracle Spatial Award Winner 2012
- Geospatial World Forum 2016
CityGML-based SDIs
Implementation requirements and examples
Senate of Berlin / Berlin Partner

Geospatial World Forum 2016
Main use is for City marketing
Update and maintenance
- on a project base
- Change detection and update every 3-5 years

Storage
- Since 2009 in 3DCityDB

Visualization
- 2009: Autodesk LandXplorer (Desktop) and Google Earth (Web)
- 2011: virtualcityMAP / 3DMaps from Agency9 (Web)
- 2016: virtualcityMAP / CesiumJS

URL: http://www.businesslocationcenter.de/wab/maps/main/
Rotterdam
Rotterdam challenges

- 3D City Model shall become an integrated and reliable base dataset for many different applications
 - Urban planning
 - Collision detection
 - Solar potential
 - Energy planning
 - …

- Approach: Rotterdam 3D working group
 - Ask the users from different departments
 - Create proof-of-concepts
 - Define workflows
 - Integrate with existing systems and workflows
Rotterdam – Underground infrastructure
Singapore
Singapore

- Data creation: Bentley Map

- Data storage: 3DCityDB

- Core requirement: Data update and maintenance is still unsolved
 - Direct connection between Bentley Map and 3DCityDB
 - Check out and feature look mechanism
 - Support of the complete CityGML information model

⇒ In 2D solved but in 3D still a challenge
Further users of the 3D City Database

- In production use in many cities and organizations worldwide
 - Berlin, Hamburg, Munich, Frankfurt, Dresden, Potsdam, Kempten, …
 - Federal Surveying departments in Germany
 - ZSHH in Germany: Nation-wide CityGML model containing buildings in LOD1 and LOD2 (ongoing); Currently more than 50 Mio. buildings in one 3DCityDB instance

- Research & Development
 - TU Delft, TU Munich, TU Berlin, Karlsruhe Institute of Technology, Eifer, EDF, …

- Companies
 - virtualcitySYSTEMS, MOSS, Luciad, …
Interested in 3D SDIs?
Open Source tools to get you started
Streaming of arbitrarily large CityGML-based 3D city models on the web

Open Source JavaScript API on top of Cesium

Allows for adding 3D object layers and for interacting with the content

- Tile-based loading and unloading
- Selection and highlighting of objects
- Hide/show 3D objects
- Cloud-based access to object attributes

SIMPLE: glTF exports from the 3DCityDB can be directly loaded into Cesium
Connecting 3DCityDB ecosystem to Geospatial World Forum 2016

3D City Database

CityGML

CityGML WFS

WFS / WMS / ...

2D/3D geo data

OGC services

query and update 3D city model

integration of 2D/3D geodata

fully automated process chain

3dcitydb-web-map

CESIUM

WebGL

virtualcitySYSTEMS
Find the 3DCityDB and tools on GitHub
CityGML-based SDIs
Implementation requirements and examples
Conclusions

- Reliable solutions for data storage and data distribution are available
 - 3DCityDB
 - 3DCityDB Web Feature Service
 - virtualcityMAP / virtualcityPUBLISHER

- Data creation, maintenance and update is still not fully solved
 - Deleting and replacing features – ok
 - Replacing the complete model – ok
 - Continuous updates through import and export workflows – ok
 - Direct database connection using an editor – not yet implemented
3D SDI as basis for complex Urban Simulation

Wind field and turbulence simulation

Smoke dispersion simulation

Blast simulation

Flooding
virtualcitySYSTEMS

The next generation of 3D city models

Follow us on virtualcitysystems.de
3D Analysis and What-If Scenarios
3D Analysis and Thematic Mapping
Linking Spatial Datasets
Urban Planning