

CLICK TO KNOW MORE

RIEGL'S AI quest to AI or not AI?

Christian Sevcik Manager, Strategic Partner Alliances

May 2024

Libraries

O PyTorch

RetinaFace

apillow 🍰

...and many more

OnenC

Python

RiDLImages DeepLearning models

RiDLPointClouds

DeepLearning models

RiDLWaveforms

DeepLearning models

RiDLCore Python Foundation

The DeepLearning networks, installed by the *RIEGL* Deep Learning Suite bundle, are accessed via Functions from within RiSCAN PRO and RiPROCESS.

Face blurring

Several pretrained models available. Although re-training is required to adopt to characteristics of imagery.

Conventional approach image processing techniques

Tree segmentation

Pointcloud classification

Geometric method

e.g neighborhood analysis, PCA, segmentation

Flexible usage

By adjusting processing parameters, differnt datasets can be classified

Expert knowledge

Proper parameter tweaking requires thorough understanding of used algorithms

© 2023 RIEGL Laser Measurement Systems GmbH - All rights reserved.

Tieobjects

Tieobjects are used to identify the same objects in different datasets. Minimizing the spatial distance of corresponding tieobjects by means of adjustment routines provides co-registered datasets.

Examples of artificial tieobjects: wedge targets

Examples of natural tieobjects: poles

- Task

Identify tieobjects in pointclouds and imagery.

- Pointcloud to pointcloud registration
- Pointcloud to imagery: camera alignment mandatory for pointcloud coloring

Machine learning

Identify target candidates

- Match target models
- Match corresponding targets

© 2023 RIEGL Laser Measurement Systems GmbH - All rights reserved

Deep learning assisted exponential waveform decomposition

Conventional approach

Exponential decomposition by analytically estimated parameters

Deep learning

Exponential decomposition by DL estimated parameters

Findings

Machine learning / Deep learning

- ✓ Very powerful for repetitive tasks on mass data of similar characteristics
- ✓ Superior to conventional techniques when data is overlayed with some sort of noise
- ✓ Scales well with better hardware
- Quality of the results heavily rely on the training data
- Massive computational efforts

Geometric / Conventional approach

- ✓ Superior in well described tasks, with rich data available
- ✓ Not necessarily slower than ML / DL
- ✓ Easier adoption for data variations
- Prone to sparse data or noise

Thank you

riegl.com

© 2024 RIEGL Laser Measurement Systems GmbH – All rights reserved. Use of this presentation other than for personal purpose requires RIEGL's written consent. The presentation is compiled with care. However, errors cannot be fully excluded and alternations might be necessary.