

CLICK TO KNOW MORE

Ground water monitoring using GIS based tool for informed decision making (National mapping)

Chiranjit Guha (General Manager)

Foundation for Ecological Security, India

WATER ON THE EARTH'S SURFACE ----- ALMOST COMPLETELY VISIBLE

GROUNDWATER ----- LARGELY OUT OF SIGHT, BUT NOT OUT OF MIND

SATKOSIA GOURGE SANCTUARY TIKARPADA-ANGUL

GLOBAL WATER DISTRIBUTION

•Why ground water monitoring is important (Availability, trend, balance)

	ВСМ	% of Water Resources	% of Fresh Water
EARTH WATER RESOURCES	1454		
Ocean & Seas	1370	94.22	
Glacier & Ice Caps	24	1.65	28.5
Fresh Water Rivers & Lakes	0.24	0.02	0.3
Ground Water	60	4.13	71.2

•What is the data availability status in the country

4.13% OF ALL WATER IS GROUND WATER

- 1. Need a platform to host crowd source data to complement CGWB data
- 2. Different organization are collecting data but not archiving in a common platform

Ground water monitoring tool (Napo Jal Bachao Kal)– Measure water and save tomorrow)

- Complementing CGWB ground water data for better decision making of soil and water conservation
- Building observability of ground water changes across over exploited area
- Modelling of the data for better visualization and action by partners
- Use the data for improving recharge-discharge potential area in CLART

(150+ organizations collectively join hands....)

Seasons	Wells Monitored	States	Districts	Blocks	Villages
Pre-Monsoon 2020	18,041	12	113	390	5353
Post-Monsoon 2020	20.733	16	141	376	5272
Pre-Monsoon 2021	34.698	12	97	485	9803
Post-Monsoon 2021	32 247	12	87	51/	9465
	40.295	12	124	679	10612
Pre-Monsoon 2022	40,385	12	134	078	10613
Post-Monsoon 2022	32,804	12	149	541	8023
Pre-Monsoon 2023	38,295	12	156	655	9859
Post-Monsoon 2023	36,233	12	88	375	7534

So, What is the difference?

WMT data at a higher resolution showing local variation of ground water regime

-

Not to scale. Not for sale. Internal purpose only

So, What is the difference?

Year to year comparison (pre monsoon)

Year to year comparison (post monsoon)

Village to Village status

Correlate with geology data

Geology

Village level status of Ground water (2020-23)

Correlate with geology data

Less fluctuation in water table

Ground water flow direction More fluctuation in water table (Recharge zone)

Rock porosity (%) Analysis

And within village

Protocols

- 3 wells far apart from each other in the same village.
- We should be able to measure these wells twice a year in the next few years.
- Take the GPS measurement at the ground level and note the depth to water level also from this same point.
- Measure water level in meters.
- If there is a motor connected to the well, please ensure a minimum of 24 hrs gap between the motor being run and the depth being measured.
- If you are equipped and experienced in measuring bore well depths then you are welcome to record depth of bore wells also. Otherwise, you can stick to open wells.
- The data collection period for premonsoon is 15th May, 2020 to 30th May, 2021 and for post-monsoon is 15th Oct to 30th Oct. In case the rain is ongoing in your location, please collect data 5 days after the rain stop

PROCEDURE OF WELL MEASUREMENT

ROCK2

Do:

1. Put the GPS/Mobile on the ground

2. Measure the depth to water from the ground

Don't:

- 1. Don't put the Mobile on parapet wall
- 2. Don't measure the depth from parapet wall

PROCEDURE OF WELL MEASUREMENT

Application Features

- 1. Offline data collection tool
- 2. Capturing geolocation, photograph
- 3. Data visualization and synchronization to portal

Web Features

- 1. Data archiving, filtering and download in excel
- 2. Data visualization through on the fly

map

3. IEC materials

TOOLS DATA PLATFORM IBIS CONTACT US GET STARTED

Groundwater Monitoring Campaign 2022 What gets measured, gets managed!

The Groundwater Monitoring Campaign - Napo Jal Bachao Kal aims to map at least 1 well in each village of India. The plan is simple: measure the wells and upload the data via the Groundwater Monitoring Tool (GWMT) to understand the status of our groundwater resources and make informed decisions for its better usage, governance and management.

🏺 Download GWM App

https://wmt.indiaobservatory.org.in

One stop portal for data visualization, data download and map making

Challenges

Crowd sourcing of data --Post processing of data

Analysis of the data – Platform enables

Scale up the model – Govt of India's *Jaldoot* now covering 450,000 villages from 2023

