

CLICK TO KNOW MORE

Geospatial World Forum 2024 Digital Twins for Climate Resilience

16 May 2024

Dr. Mila Koeva

Associate Professor University of Twente ITC Faculty m.n.koeva@utwente.nl

UNIVERSITY OF TWENTE.

- Combining technical and social sciences to make a difference in society
- Most entrepreneurial university
- Cross-disciplinary way of working
- Internationally oriented

HIGH TECH HUMAN TOUCH

SCIENCE AND TECHNOLOGY (TNW)

ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE (EEMCS) ENGINEERING TECHNOLOGY (ET)

BEHAVIOURAL, MANAGEMENT AND SOCIAL SCIENCES (BMS)

FACULTIES

GEO-INFORMATION SCIENCE AND EARTH OBSERVATION (ITC)

DIGITAL TWIN GEOHUB

DR. M.N. KOEVA (MILA) Associate Professor, DTG Coordinator

DR.IR. S.J. OUDE ELBERINK (SANDER) Associate Professor

PROF.DR.IR. C. PERSELLO (CLAUDIO) Adjunct Professor

DR.IR. L.L. OLDE SCHOLTENHUIS (LÉON) Associate Professor

DR.IR. F. VAHDATIKHAKI (FARID) Assistant Professor

DR.IR. W.J. TIMMERMANS (WIM) Researcher

DR. P. NOURIAN MARCH (PIROUZ) Assistant Professor

DIGITAL TWINS

WHAT?

2D/3D city model

Real-time data

Continuous data update

Open data

User requirements

DIGITAL TWINS

To answer major societal question to solve wicked problems with strong geospatial relationships:

- Climate change
- Urbanization
- Disaster management
- Land rights, equality
- 3D valuation/taxation
- Improved living conditions
- Pandemics

DIGITAL TWINS FOR CLIMATE RESILIENCE

HOW?

- Simulation of real systems
- Climate adaptation and mitigation
- Predictive analysis and decision support
- Optimization of resources
- Interactive and collaborative tools

PEOPLE LAND AND URBAN **SYSTEMS (PLUS)**

- How Digital Twins can help?
- How photogrammetry and RS can help? \bullet
- How geospatial innovations can help? \bullet
- How AI or VR can help?

DIGITAL TWIN – ENSCHEDE URBAN HEAT ISLAND

DIGITAL TWIN – ENSCHEDE URBAN HEAT ISLAND

(Koopmans et al., 2020)

- Body Temperature = Ext. T° +
 Int.T° + Sweat + clothing
- Male 35yo, 1.75, 75kg, cloths =0.9,
 Walking at 4km/h

РЕТ	Physiological Stress Grade	
18°C	Slight Cold Stress	^
2200	No Thermal Stress	
23°C	Slight Heat Stress	
29°C	Moderate Heat Stress	Existing Grades
35°C	Strong Heat Stress	
41°C	Extreme Heat Stress (LV1)	↓ ↓
46°C	Extreme Heat Stress (LV2)	^
51°C	Extreme Heat Stress (LV3)	New Required Grades
>56°C	Extreme Heat Stress (LV4)	\downarrow

 $PET_{sun} = -13.26 + 1.25T_a + 0.011Q_s - 3.37\ln(u_{1.2}) + 0.078T_w + 0.0055Q_s \ln(u_{1.2}) + 5.56\sin(\phi) - 0.0055Q_s \ln(u_{1.2}) + 0.0056Q_s \ln(u_{1.2}) + 0.005Q_s$

 $PET_{shade, night} = -12.14 + 1.25T_a - 1.47\ln(u_{1.2}) + 0.060T_w + 0.015S_{vf}Q_d + 0.0060(1 - S_{vf})\sigma(T_a + 1.25T_a) - 1.47\ln(u_{1.2}) + 0.060T_w + 0.015S_{vf}Q_d + 0.0060(1 - S_{vf})\sigma(T_a + 1.25T_a) - 1.47\ln(u_{1.2}) + 0.060T_w + 0.015S_{vf}Q_d + 0.0060(1 - S_{vf})\sigma(T_a + 1.25T_a) - 1.47\ln(u_{1.2}) + 0.060T_w + 0.015S_{vf}Q_d + 0.0060(1 - S_{vf})\sigma(T_a + 1.25T_a) - 1.47\ln(u_{1.2}) + 0.060T_w + 0.015S_{vf}Q_d + 0.0060(1 - S_{vf})\sigma(T_a + 1.25T_a) - 1.47\ln(u_{1.2}) + 0.060T_w + 0.015S_{vf}Q_d + 0.0060(1 - S_{vf})\sigma(T_a + 1.25T_a) - 1.47\ln(u_{1.2}) + 0.060T_w + 0.015S_{vf}Q_d + 0.0060(1 - S_{vf})\sigma(T_a + 1.25T_a) - 1.47\ln(u_{1.2}) + 0.060T_w + 0.015S_{vf}Q_d + 0.0060(1 - S_{vf})\sigma(T_a + 1.25T_a) - 1.47\ln(u_{1.2}) + 0.060T_w + 0.015S_{vf}Q_d + 0.0060(1 - S_{vf})\sigma(T_a + 1.25T_a) - 1.47\ln(u_{1.2}) - 1.47\ln(u_$

DIGITAL TWIN PET CALCULATION FOR UHI MITIGATION

Cárdenas, I. L., Morales, R., Koeva, M., Atun, F., & Pfeffer, K. (2023, August 31). Digital Twins for Physiological Equivalent Temperature Calculation Guide. Zenodo. <u>https://doi.org/10.5281/zenodo.8306456</u>

Online tool

DIGITAL TWIN GROUND WATER TABLE MONITORING

MEASUREMENTS: **REAL TIME DATA** MONITORING OF: GWT DEPTH WEATHER APPLIED TO: UPDATES: DIGITAL WORLD> TWIN CONSIDERS: CONSIDERS: GROUND WATER TABLE. GEOMETRY LOCATION TREES (ROOTS) BUILDINGS STATIC+REAL TIME WATER PUMPS OBJECTS TRASH CANS PIPES-DUCTS-CABLES SUPPORTS: INFORMATION TO CONTROL: ASSETS GROUNDWATER TABLE WARNINGS WATER PUMPS

DIGITAL TWIN GROUND WATER TABLE MONITORING

DIGITAL TWIN WASTE MANAGEMENT

Input	A geospatial vector point layer with the attributes: Waste daily production (in m ³), Current waste generation (of the simulated hour), Accumulated waste (m ³), Container
Output	Random accumulation of waste in each container location Accumulated waste Saturation of each container

Dung,Came 1

178.5 Kg of waste

.

DIGITAL TWINS FOR ASSET MANAGEMENT

Data collection

- Cameras on Service Trucks
- Semi-Automatic Recognision

DIGITAL TWIN GROUND WATER TABLE MONITORING & TREE ROOTS DEVELOPMENT

DIGITAL TWIN TREE ROOTS DEVELOPMENT

(Ortega-Córdova, 2018)

The available tree points per neighbourhood in Enschede

DIGITAL TWIN GENERATIVE DESIGN FOR WALKABILITY

- Kumalasari, D.; Koeva, M.; Vahdatikhaki, F.; Petrova Antonova, D.; Kuffer, M. Planning Walkable Cities: Generative Design Approach towards Digital Twin Implementation. *Remote Sens.* **2023**, *15*, 1088. https://doi.org/10.3390/rs15041088
- Kumalasari, Dewi (2022) Generative Design for Walkable Cities: a case study of Sofia. (Master's thesis, University of Twente).
 Generative Design for Walkable Cities: A Case Study of Sofia, Kumalasari, D.; Koeva, M.; Vahdatikhaki, F.; Petrova-Antova, D., SCSD 2022

UNIVERSITY OF TWENTE.

ПС

AI FOR 3D BUILDINGS NEEDED FOR DIGITAL TWINS

- Kenzhebay, Meruyert (2022) Planar roof structure extraction from Very High-Resolution aerial images and Digital Surface Models using deep learning. (Master's thesis, University of Twente).
- Golnia M. (2021). Building outline delineation and roofline extraction: A deep learning approach (Master's thesis, University of Twente).
- Wufan Zhao, Claudio Persello, Alfred Stein, Building outline delineation: From aerial images to polygons with an improved end-to-end learning framework, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 175, 2021

AI FOR 3D BUILDINGS NEEDED FOR DIGITAL TWINS

Class	Precision	Recall	F1-score
Eave	0.82	0.81	0.81
Ridge	0.49	0.61	0.55
Hip	0.23	0.51	0.32
Other	0.97	0.96	0.96
Total	0.63	0.72	0.66

AI FOR 3D BUILDINGS NEEDED FOR DIGITAL TWINS

BUILDING ROOF STRUCTURE DELINEATION

MODEL TRAINED ON

MODEL TRAINED ON ENSCHEDE (POLYGONS)

GROUNDTRUTH

MODEL TRAINED ON ENSCHEDE

MODEL TRAINED ON SOFIA

ENSCHEDE+SOFIA

VECTORIZATION

MODEL TRAINED ON ENSCHEDE+SOFIA (EDGES)

MODEL TRAINED ON ENSCHEDE+SOFIA (POLYGONS)

RESULTS

Artez Hogeschool voor de Kunsten

21155

iteit

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

