Improving the productivity of terrestrial laser scanning in the field and in the office

Nikolaus Studnicka Manager TLS Business Division nstudnicka@riegl.com

May 3rd, 2023 Rotterdam

terrestrial laser scanner

RIEGL VZ-600i terrestrial laser scanner

High Productivity

- "One-Touch"-button operation
- RIEGL VZ-i Project Map App for scan project monitoring
- concurrent scan and image data acquisition
- Real-Time On-Board automatic registration
- "One-Touch"-Processing Wizard for automatic production of end deliverables

Ultimate Performance

- pulse repetition rate up to 2.2 MHz
- scan speed up to 420 lines/sec.

30 sec scan time (6 mm resolution @ 10 m distance)

high speed data download ot up to 500 MB/sec

Extreme Versatility

- for various applications
- indoor and outdoor 3D mapping

short and long ranges

lightweight (approx. 6 kg / 13 lbs)

developing user-specific Python apps

Additional Mobility

- prepared for robotic operation integration (ROS driver available)
- option for kinematic laser scanning
- can be used with the *RIEGL* VMR Robotic Rail Scanning System
- flexible mounting platforms

grey-coded point cloud (reflectance)

MIG

.....

RAF

O.T

colored point cloud (true color)

Æ) F	RIE	EG	R				R						
Calculation	results						_	· _		The second	New Parts			
Statistics Ch	arts Point A	ttribute Statist	ics			Units:	[m] [den] [dB] [dB]	Amplitude					7/11	
NUMBER	OF POIN	NTS												
Total: 13552	Val	id: 13552	Rate: 1	00.00%							Scan	Pos032		
STATIST	ICS									R				The second
	Min	Max	Max - Min	StdDev	Mean				about the					/
Range:	2.59818	2.76763	0.16945	0.03495	2.67941	Сору								
Amplitude:	29.75000	31.08000	1.33000	0.18515	30.41184			- Seree	2 ho					
Reflectance:	-4.77000	-3.35000	1.42000	0.20185	-4.05577			2	-					
Deviation:	0.00000	7.00000	7.00000	1.30431	1.50782			Less.	the fi				10	
Red:	0.50980	0.60784	0.09804	0.01704	0.55579									
Green:	0.50588	0.60392	0.09804	0.01719	0.55176									
Blue:	0.52941	0.62745	0.09804	0.01838	0.57300			PLANE						
									Min	Max	Max - Min	StdDev	Mean	
PLANE								Range:	-0.00307	0.00784	0.01091	0.00088	0.00000	
	Min	Max	Max - Min	StdDev	Mean			hanger						
Range:	-0.00307	0.00764 X	0.01091 V	0.00066	0.00000									
Plane positio	n:	-0.16006	-2.48679	-0.98182					<1mr	n stand	lard dev	iation		
Plane normal	vector:	0.49116	0.87017	-0.03960							(4.0)			
Inclination ar	ngle:	34.638							of sel	ected a	irea (13	552 ind	ividual	
									range		100000	c) / m c		
						ОК	Cancel	Help	range	e meast	irement	5) / 110	averagir	ıg

罪

York / down town

data acquistion	RIEGL VZ-600i
date	March 15th, 2023
time	14:22 - 16:33
Nr. of scan positions	149

York / down town

data acquistion	RIEGL VZ-600i
date	March 15th, 2023
time	14:22 – 16:33
Nr. of scan positions	149

RIEGL VZ-600i scan project: rail track - clearance

Lübeck

Google Maps

Bremerhaven Rodenkirchen

Idenburg

Bremen

RIEGL VZ-600i scan project: rail track - clearance

rail track - clearance

https://digitale-schiene-deutschland.de/de

Digitale Schiene

Deutschland

Die Vision der DB zur Digitalisierung von Infrastrukturanlagen der Eisenbahn basiert auf drei Segmenten:

Digitales Planen und Bauen
Digitales Anlagenmanagement

3. Digitaler Betrieb

Protection Class

IP64, dust- and splash-proof

Innovation in 3D

rail track - clearance

Mast bolt

bi-axial reflex foil

Innovation in 3D

RIEGL VZ-600i scan project: rail track - clearance

Report for Multi-Station Adjustment

Project name: 2022_11_Rink_Bahn_RSP Global Coordinate Reference System (GLCS): ETRS89 / Geocentric (EPSG::4936) Report GLCS: DB_REF / 3GK zone 3 E-N (EPSG::5683) Project origin: Easting [m]: 3463781.7404 Northing [m]: 5917884.3601 Height [m]: 1.2973

4.4.1 Control Points in CRS#2

Control points in CRS#2 ... DB_REF / 3GK zone 3 E-N (EPSG::5683)

46 observations have been utilized on 37 control points in CRS. MSA results in the following statistics on the residuals:

	dX [m]	dY [m]	dZ [m]	dist. [m]
Minimum deviation	-0.0197	-0.0101	-0.0330	0.0013
Maximum deviation	0.0267	0.0115	0.0386	0.0387
Moon doviation	0.0002	0.0004	0.0004	0.0130
Standard deviation	0.0091	0.0043	0.0126	
Median abs. dev. (std)	0.0085	0.0038	0.0072	

Rodenkirchen scan project: rail track - clearance

Rodenkirchen scan project: rail track - clearance

Regensburger Cathedral

data acquisition	<i>RIEGL</i> VZ-600i laser scanner
date	20-21. March 2023
time	Mo. 11:11 – 17:12 Tu. 8:15 – 18:01
number of scan positions	501

www.riegl.com Copyright RIEGL International GmbH © 2022 – All rights reserved.

screenshot created within the laser scanner -> mobile devi

One-Touch Processing Wizard

Ð

time / scan position

COORDINATE REFERENCE SYSTEMS

GeoSysManager database file: D:\RIEGL SCANS\2023_02_20_Wien_Museum_PORR\2023_02_20_Wien_Museum.RiS ~

Import		Scanner GNSS			
Source Coordi	nate Reference System:	Source Coordinate Reference System:			
MGI / Austria	Gauss-Kruger East / G \vee	(none)	~		
Datum Transfo	rmation:	Datum Transforma	Datum Transformation:		
(none)	~	(none)	~		
Г	BISCAN PRO GLCS				
	Global Coordinat				
	MGI / Geocentric	~			
Export					
Datum Transfo	rmation:				
Target Coordin	iate Reference System:	D RESSEL Wion	×		
WOI / Austria	Sauss-Kruger East / GEOI	D_BESSEL_WIEII			
Name	Y	X	Н		
1031	3021.285	340051.730	2.172		
PV1	3003.810	340125.367	0.131		
PV2	3068.364	340119.896	0.062		
1014	3078.678	340067.279	-0.402		
1015	3081.725	340060.898	-0.765		
1016	3089 321	340042 197	-0 519		
1022	2007.002	240070 547	1 504		
1032	2997.002	340079.347	1.394		
1033	2998.542	340101.889	1.307		
1034	3018.617	340124.112	0.889		
1035	3026.619	340120.578	-0.227		
1128	3080.227	340116.145	-0.286		

/ observations have been utilized on / control points in CRS. MSA results in the statistics on the residuals:

	dX [m]	dY [m]	dZ [m]	dist. [m]
Minimum deviation	-0.0091	-0.0052	-0.0150	0.0050
Maximum deviation	0.0115	0.0073	0.0175	0.0202
Mean deviation	0.0011	-0.0003	0.0005	0.0119
Standard deviation	0.0066	0.0042	0.0101	

comparison: point cloud / BIM model

point cloud

BIM model

control points

	dX [m]	dY [m]	dZ [m]	dist. [m]	
Mean deviation	0.0001	0.0003	0.0001	0.0062	
Standard deviation	0.0036	0.0031	0.0050		
Median abs. dev. (std)	0.0050	0.0023	0.0042		

Construction site Hungary

data acquisition	<i>RIEGL</i> VZ-600i laser scanner
date	19. April 2023
time	8:18 - 16:23
number of scan positions	379 (1 scan position / minute)

scan positions (6027 meter)

laser scan (19.4.2023)

+

DJI drone with photo camera (14.4.2023)

-UE

121 2

C 3.10

a.

6-665666

VEL .

laser scan (19.4.2023)

nstructio

1.1.1

DJI drone with photo camera (14.4.2023)

0 π Ξ. b.1d E. Ð 12 L \mathbb{E}^{\prime} 121 я Ш 5 • 黀 I. 1 . - 3 4 1-1 U L 5 0 123 1 1.1 1 40 144 Ĩ . ·)) 單 ш --..... CI. Rad e de la . . đ 1 19 laser scan (19.4.2023) orthogonal top view, "X-Ray"

construction П B B laser scan (19.4.2023) orthogonal top view, "X-Ray" 10.000 m

point cloud / 1cm resolution

BIM model (geo-referenced)

Thank you for your kind attention!

Nikolaus Studnicka Manager TLS Business Division

nstudnicka@riegl.com

Use of this presentation other than for personal purposes requires *RIEGL's written consent*. The presentation is compiled with care. However, errors cannot be fully excluded and alternations might be n

