

Monitoring Mining Areas from Space

InSAR technology as a tool for the evolution of mining industry

Fernando Bellotti Geospatial World Forum, Rotterdam, 4th May 2023

Introduction

- Implementing a risk management and mitigation program is a necessary way to ensure safe and profitable a mining operation.
- Since it's beginning in 1992, InSAR has grown to be an easy-to-integrate companion of in-situ monitoring instrumentation and has proven itself as an effective technology for monitoring surface deformation.
 - InSAR is now recognized as a reputable monitoring solutions thanks to its capability of extending the monitoring scale to the entire mine site facilitating strategic monitoring.

Hazard Mitigation and Risk Reduction

- Increasingly important for mining operations as highlighted by recent catastrophic failures of tailings dams worldwide.
- These events have focused industry attention on the importance of developing and implementing effective monitoring strategies on all mine sites.

INSAR TODAY

Satellite Radar Interferometry

A remote sensing technique capable of identifying and measuring ground deformation widely adopted in slope stability assessment and monitoring globally.

What is InSAR?

Interferometric Synthetic Aperture Radar

- Using data from radar satellites the first deformation maps were produced in 1992 to measure the effects on an earthquake.
- InSAR technology has rapidly advanced to become a remote sensing technique for measuring ground deformation.
- Uses high-resolution sensors, with automatic, robust and scalable processing algorithms.

Basic Deformation Maps

Contour map of recent deformation

SqueeSAR® Technology

- Requires 15+ images.
- Identify point targets on the ground.
- No instrumentation or site access required.
- Removal of:
 - Atmospheric Noise
 - Topographic Noise
- Produces high-density point cloud of measurements.
- Every point has a time-series of deformation.

InSAR Measurements (SqueeSAR)

Vertical and Horizontal East-West Decomposition

- SAR satellites navigates along near-polar orbits sensitive to surface change occurring along a line-of-sight (LOS).
 - Basic InSAR measurements are a one-dimensional (1D).
 - Single geometry may miss steep slopes on one side of a pit.
- Combining the Earth's rotation with satellite orbital paths captures the Earth's surface in two satellite geometries (2D).
 - Ascending (or east-looking)
 - Descending (or west-looking)

The Strength of Double Geometry

Combining Ascending and Descending data sets:

- Maximises the coverage of ground features, especially in areas with strong topography.
- Simplifies the interpretation of InSAR results by providing true vertical and horizontal east-west data instead of simple LOS measurements.
- Enhances the integrability of InSAR data with geotechnical sensors, Automatic Total Stations (ATS), levelling, GNSS and slope stability radars.

2D Analysis Maps

East-West Cross Section

SATELLITE RADAR SENSORS

High resolution and Medium Resolution

Current State

- More than 15 satellite options with different frequencies, spatial resolutions, orbits and revisit times.
- New satellites are being set in orbit to replace older generations.
- Additional satellites are being added to existing constellations.
- New constellations are scheduled to take orbit in the near future.

Sentinel vs COSMO-SkyMed – Waste Piles

A RECENT CASE STUDY

Xinjing Mine Slope Failure

Collapsed area

Sentinel-1 Results

TREMARS

MONITORING WITH INSAR: A REAL PERSPECTIVE

How We Get There

- Higher frequency of observations will make InSAR monitoring programs even more effective for rapid decision making.
- Continuous improvement of machine-learning algorithms such that users have the ability to take advantage of present and past data to predict future trends based on probabilistic geotechnical models.

InSAR Monitoring Services

- Today's InSAR services and tools used in mining:
 - Identifying slope instabilities and associated risks
 - Mapping & measuring subsidence
 - Identification of active faults
 - Monitoring block caving induced subsidence
 - Monitoring TSF integrity
- Fully remote monitoring service using improved satellite constellations.
- Provides a site-wide bird's eye view of surface deformation over multiple assets.
- Complements other monitoring methods and easy to integrate in data integration platforms.

InSAR Monitoring Services on TREMAPS

- Displacement updates with every new acquisition.
- Time-series of deformation describing the evolution of surface displacement in terms of velocity, acceleration or seasonality.
- Potential updates up to every 2 days (in the future) using a variety of constellations acquiring simultaneously.

InSAR technology for mining activities SqueeSAR [mm]

InSAR technology for mining activities Rapid Motion Tracking [dm - m]

InSAR technology for mining activities

InSAR Bulletin [cm - dm]

EXAMPLE OF CURRENT SERVICE

Continuous Monitoring over TREMAPS Portal

TREMAPS WEB PORTAL

- Web portal to distribute our data an provide some analysis tools to the clients
- Easy to access to several operators or working groups related to a single mine areas i.e. (mine managers, Geotech, surveyors)
- The data can be downloaded to use in GIS systems

TREMAPS: toward a dynamic use of our data

tre-altamira.com | © TRE ALTAMIRA 2023

Dynamic use of our data: TREMAPS

tre-altamira.com | © TRE ALTAMIRA 2023

Dynamic use of our data: TREMAPS

tre-altamira.com | © TRE ALTAMIRA 2023

Sinergy with other techniques

- Collaborating with other monitoring service providers to ensure data products can be merged and integrated in other platforms.
- Working with clients to better understand their needs and requirement.
- Continuous development of new processes and tools to help users get the most out of our products.

Our goals

Effective monitoring programs:

- Visualization: Data screening tools.
- **Trend Detection**: Identification of relevant surface movement trends
- **Rapid Updates**: weekly (current) or even every day or few hours (in the future).

Client's goals

- Receive timely information
- Enable geotechnical and mine management to:
 - Improve strategic decision-making
 - **Optimize** operations
 - **Reduce** potential hazards

Who We Are

MILANO

Ripa di Porta Ticinese, 79 20143 Milano - ITALY Tel: +39 02 4343 121

BARCELONA

Carrer de Còrsega, 381-387 08037 Barcelona - SPAIN Tel: +34 93 183 57 50

VANCOUVER

Suite 410, 475 West Georgia Street Vancouver, BC V6B 4M9 - CANADA Tel: +1 604 331 2512

SOUTH AFRICA **Regional offices** CHILE PERU FRANCE **AUSTRALIA** BRAZIL B3 Millside Park, Av. Rio Branco, 311 sala 1205 Almirante Señoret 70, Av. Angamos Oeste 537 Parc Technologique du Canal Suite 207 – 122 Toorak Morningside Road 11, Rue Hermès Road | South Yarra Centro, Rio de Janeiro, Oficina 74 Miraflores, Lima Ndabeni, 7405, Cape Town RJ. 20.040-009 Valparaíso Tel: +51 1 4402717 F-31520 Ramonville St Agne Melbourne Tel: +27 21 705-0819 Tel +56 32 2252843 Tel +55 21 2532-5666 Tel: +33 561 39 47 19 Tel: +61 455 154552

tre-altamira.com

InSAR Technology Basics

λ - wavelenght:

C-band = 5.66 [cm] X-band = 3.10 [cm] L-band = 24.00 [cm]

Derivative Maps

Satellite availability vs Date of Failure

- >> Date of failure: 22/02/2023
- Sentinel-1 Track 157 Ascending was the **best option** among other Tracks covering the area
 - Unfortunately, Track 157 stop the acquisition 15/11/2022
 - Furthermore, between the 13/04/2022 and the 15/11/2022, Sentinel-1 acquired only 4 images (less than 1 image/month

Sentinel-1 Results

Comparing Spatial Resolution

- A comparison of SNT and TSX at over mine assets at the same scale.
- Green scale bars are all 100m.
- SNT: Shows a general picture of the surface deformation.
- TSX offers more detailed characterization, and better contouring of the deformation affecting the structures.

Who We Are

SCIENTIFIC REPORTS

COLLECTION | 11 MARCH 2020

Top 100 in Earth Science

This collection highlights our most downloaded* Earth science papers published in 2019. Featuring authors from around the world, these papers feature valuable research from an international community.

*Data obtained from SN Insights which is based on Digital Science's Dimensions.

ARTICLE OPEN ACCESS 1 OCT 2019 Scientific Reports

Perspectives on the prediction of catastrophic slope failures from satellite InSAR Tommaso Carlà, Emanuele Intrieri --- Nicola Casagli

www.nature.com/collections/agegihhehi

A Growing Demand

The number of SAR data sources is increasing steadily:

- Growing demand for earth observation (EO) data.
- Reduced cost in manufacturing, launches & operation.
- Increasing demand from the private sector.
- Applications evolution from Intelligence & Security to Institutional Projects to Commercial Applications.
- Complementary to optical image without susceptibility to cloud cover.
- Increasing interest from investors despite a high-risk factor still associated with the aerospace sector.

The Trend is Clear

Company		Country	Constellation (# Satellites)	Website
ICEYE	ICEYE	Finland	18 (4 already in orbit)	www.iceye.com
CAPELLA Space		USA	36	www.capellaspace.com
Umbra Lab	UMBRA	USA	12	www.umbralab.com
SYNSPECTIVE	Synspective	Japan	25	www.synspective.com
Urthecast: OptiSAR	I urthecast	Canada	8	www.urthecast.com
XpressSAR	XPRESS SAR	USA	8	www.xpresssar.com

Small SAR Sensors

Data redundancy:

- Numerous smaller & less expensive sensors.
- Reduced risk in service interruption or failure.
- Satellite sensors easily added, replaced or upgraded.

High-resolution and short revisit cycles:

- High spatial resolution (<1 m).
- Very short revisiting time.
- Daily acquisitions as the new standard.
- Possibility to increase up to 3–4 images/day.

Image courtesy ICEYE