

Mitigating Climate Risk for Investors into Forestry

Phil Cottle of 'ForestRe'

Geospatial World Forum

Banking, Financial Services & Insurance Sector Rotterdam, the Netherlands; 2 – 5 May 2023

Forestry wind damage, cyclone Gabrielle February 2023, New Zealand

'ForestRe'

UK-based Forestry insurance Agency (MGA)

- Insure <u>managed</u> forests Globally
 - We have our own 'capacity'
 - Access international reinsurers
- Provide risk profiling
- Risk transfer solutions

Clients with values from: US\$ 0.5m to US\$ 10bn

Worldwide forest risk profiling

Global reach of ForestRe

Map:- forest risk analysis sites

Reach

- Insuring in 30 countries & 6 continents
- 30-years experience in forestry risk analysis, pricing & management

Climate perils insured

Wind and fire are the major catastrophic perils representing 95% of all our insured losses

What does climate-related risk look like in forestry (frequency & severity)

Patterns & severity of losses – example 1

1. Large forestry investment – Australian Fire

Value 2022 = US\$256m

Beware the average & extreme events

Fire catastrophes occur when... the improbable coincides with the improbable. Extreme events are impossible to prevent or predict. SPECIALTY

MGA UK

US forestry investment risk profile

Patterns & severity of losses – example 2

Large forestry investment – USA Hurricane Value 2010 = US\$430m

'As-if' hurricane US\$ losses at constant 2010 prices

About 15-20-year gaps between major loss events

Source: ForestRe 2010 with JLT.

USA hurricane frequency trends

Loss patterns are changing;

increasing frequency of events Atlantic, Pacific and across Europe

Increased temperature is a factor

SRe Corporate Solutions Oct. 2022

A +1C rise in sea-surface temps generates: + 5% wind speed & + 50% destructive potential

Our use of geospatial data

ForestRe data source transition

Spain	Fire Lo	ss Cos	t per R	egion
Year	Cataluna	Galicia	Castilla La Mancha	Extremadu ra
2012	0.578%	0.353%	0.396%	0.082%
2011	0.015%	0.660%	0.038%	0.064%
2010	0.020%	0.214%	0.009%	0.012%
2009	0.121%	0.162%	0.265%	0.181%
2008	0.014%	0.071%	0.009%	0.013%
2007	0.061%	0.085%	0.006%	0.071%
2006	0.130%	3.951%	0.070%	0.087%
2005	0.258%	1.574%	0.818%	0.506%
2004	0.028%	0.721%	0.088%	0.118%
2003	0.530%	0.352%	0.195%	1.287%
2002	0.068%	0.539%	0.060%	0.106%
2001	0.071%	0.286%	0.051%	0.112%
2000	0.189%	0.722%	0.419%	0.110%
1999	0.035%	0.104%	0.082%	0.095%
1998	0.984%	0.790%	0.024%	0.086%
1997	0.045%	0.398%	0.051%	0.065%
1996	0.038%	0.246%	0.025%	0.017%
Total	0.187%	0.660%	0.153%	0.177%

'Loss cost' = hectares burnt / all forestry hectares

1. To 2019:

- Used empirical data of forest losses from a private company or public authorities
- Often data incomplete so would source substitute data recorded by ForestRe.
- So, data often NOT representative of true risk
- The data may not include a major event but reflected its 'volatility' – an indicator of major loss potential
- Ran Monte Carlo simulations for MEAN and 1:250 event worse case

SPECIALTY

2020 ForestRe transitioned to EO data

- 2. Engaged Earth Blox to produce:
 - Very user-friendly tool to access & process earth observation databases
 - To examine:
 - a. Land use cover
 - b. Burn scar time series/d-NBR
 - c. Soil moisture
 - d. Weekly rainfall
 - e. Flood
 - f. Wind damage and much more.

ForestRe EO data requirement

Data cost is a factor:

- We generate income only when insurance is completed.
- However, the costs of assessing an insured loss do get paid by insurers

Comparing fire risk client Vs environment

We can now compare:

the fire loss 'performance' of the insured's locations

with

the general fire incidence in the region in which it is located

Forest Manager loss assessment vs Earth Blox

Figure 1 **Forest Manager** initial assessment after H. Laura

Figure 2 **Earth Blox** wind damage assessment

Mapping fire impact: - burn scars

Insured forest damage is calculated

Forestry burn scar indemnity product

- Based entirely on satellite burn scar measurements
- $\circ~$ A loss is required to make a claim
- The forest manager will assess his fire loss
- The burn scar analysis provides independent verification check
- Images comparing pre and post fire data

Assisting clients with their Climate risks in forestry

Contribution to managing fire risk

- 1. Analysis of portfolio fire risk 'know your risk'
 - 20 year burn scar analysis
 - Modelling for volatility and projected size of severe events as 1 in 250
 - Indicating the quantum of an extreme event
- 2. In-forest fire management & plans
 - **Prevention** daily fire weather index x site
 - Identification fire detection cameras
 - **Rapid suppression** crews and equipment
- 3. Transfer of risk to insurers
 - Policy structuring
 - Risk sharing and
 - Minimising premium costs

Increasing client's wind risk awareness

- **1.** Analysis of historic wind risk ('know your risk')
 - Hurricane frequency good data from NOAA
 - Extra-tropical storms

ForestRe

- Localised wind storm impacts poor data
- 2. Mapping client's historic wind risk ('know your risk')
 - Mapping past wind damage over last 5+ years
- 3. Transfer of risk to insurers policy structuring
 - Risk sharing and
 - Minimising premium costs

Summary & Contact Information

- 1. Rapid improvement in data capability in recent years
- 2. Much closer relationship with clients adding value to their business
- 3. Clients becoming far more aware of their exposure to climate change

Contact Details

Phil Cottle Head of ForestRe Philip.cottle@specialtymgauk.com (+44) 7769 895048 Dan Longden Underwriter daniel.longden@specialtymgauk.com (+44) 7519 610484 Yuming Zhi Underwriter / Analyst yuming.zhi@specialtymgauk.com (+44) 7754 856091