

Artificial Intelligence at National Land Survey of Finland

Improving Topographic Data Production using AI/ML methods

Jani Kylmäaho, CDO

Dr. Lingli Zhu, Senior Expert and Project Lead

AI Strategy at National Land Survey of Finland

Use of AI and ML methods in foundation data maintenance will be a key success factor in:

- Ensuring up-to-date, high quality and timely delivered topographic data and maps, for the benefit of the society.
- 2. Improving productivity of our operations.
- 3. More meaningful work for our employees; from browsing the imagery for changed objects manually -> to training the models and ensuring high quality output.

Looking into use of AI also in other contexts.

Why is NLS FI Developing AI/ML?

- Currently topographic data is being updated using stereo models of aerial images with ~130 human operators --- labour intensive work
- A huge amount of data needs to be processed annually
 - The ongoing aerial imagery program started in 2020 --- aerial images yearly covering one third of Finland in 30-50cm resolution. One of the use cases is topographic map updating.
 - The new national lidar program also started in 2020 --- new Lidar data yearly covering **one sixth** of Finland to provide 5pts/m2 density for point cloud data.
 - Next round of the national aerial imagery and lidar program from 2026-> is estimated to reach 10cm resolution for aerial imagery and 20pts/m2 density for lidar.

AI/ML Initiatives at NLS FI

1st phase: ATMU project to develop methodology and PoC

- A two-year project (2021-2022), funded by the Ministry of Finance, with a funding of 400 000 €.
- Train AI (Deep learning technology) to make National topographic map updating process more productive.
- Focusing on buildings, roads, and hydrographic features updating.
- Results are very promising!

2nd phase: Refining the developed methods

- One year project (2023), co-funded by Ministry of Agriculture and Forestry and NLS FI.
- Improving the positional accuracy of the TDB building vectors.
- Moving topographic database building footprints to match with the building polygons created in the first phase.
- Further development of watercourse detection using the AI method.

1st Phase: ATMU Project

Exploiting deep learning methods for **object detection** and **change recognition**

Building detection and change recognition

Road detection and change recognition

Watercourse detection

Convolutional neural network

Convolutional neural network Multitask learning

Convolutional neural network

Source data and Training datasets

Building vectors

Road and watercourse vectors

Methods used in the process

NATIONAL LAND SURVEY OF FINLAND

Finland looks mostly like this...

10

Building Detection

M

((

Results from the ATMU UNet model for building detection

Before postprocessing

Post processed result and vectorization

NATIONAL LAND SURVEY OF FINLAND

Buildings from Laajasalo, Helsinki, for evaluation

Expert Evaluation on Laajasalo test area

Reference datasets were used to evaluate the ATMU building vectors:

- a. Building vectors from the NLS topographic database
- b. Building permit registry (point locations of buildings)
- c. Helsinki city open building database
- d. Building classifications deducted from lidar data

The evaluation results showed that the ATMU UNet model achieved an accuracy up to 97.9% on the object level in this area.

More work still needed on different kind of areas.

13

ATMU Building Model was tested on Swedish data

Swedish Data (Left)

VS.

Finnish data (Right)

Swedish post processed data using the ATMU building model

Road Detection

M

((

Road detection outputs: Road surfaces and Road edges

SIV

Result of road surfaces

Result of road edges

U 20

Result from road detection

One more example of the result

U 22

Change Detection Watercourse Detection

M

((

Change Detection Results

Change Detection Results

Result of building and road change detection

96 %

of building and road changes were correctly identified.

SIV

U 26

NATIONAL LAND SURVEY OF FINLAND 10.5.2023

Watercourse detection

Ground truth

Detected watercourses by UNet

NATIONAL LAND SURVEY OF FINLAND

Knowledge and experience sharing during the ATMU project

- High quality building training data (about 50km2) released to the public with an open license.
- Four open seminars hosted by ATMU to share our experiences (300+ registered participants in total).
- A workshop "Deep Learning—sharing experience from the ATMU project" for the Nordic Land Mapping Network.
- The ATMU work has been presented in many international events: webinars, conferences, workshops and <u>articles</u>.
- Three Master's thesis have been completed in the ATMU project.
- One conference paper (full paper) + three Journal papers published

Deliverables of 1st Phase

- Deep learning solution for building detection
 - The AI (UNet) model for building detection was <u>trained with datasets</u> covering an area of more than 60,000 km2. Training data is **Open** data.
 - Produced 100,000+ km2 true orthophotos.
- Deep learning solution for road detection
 - The AI (RoadVecNet) model for road detection.
- Deep learning solution for building and road change detection
 - The AI (NestNet2) model.
- Deep learning solution for watercourse detection

29

- 36km2 data were trained.
- Preliminary result from the UNet was achieved. Further development

is needed. 5/10/2023

Next Steps

2nd Phase (2023) Expected Outcomes

31

- Method for correcting topographic db building vectors.
- Building vectors produced in the project with an artificial intelligence method.
- Corrected topographic database building vectors.
- An improved method for watercourse detection.
- Completed Business Requirements regarding the assessment of change effects and the solution concept.
- Evaluation of how automation can increase the productivity of our data production process.
- Expert evaluation / validation report.
- \mathbf{E}_{U} Final project report.

NATIONAL LAND SURVEY OF FINLAND 10.5.2023

Example: Positional Accuracy Improvement

- To improve the positional accuracy of TDB building vectors by using the building vectors produced by the ATMU 1st Phase as reference.
- After correction, accuracy of the TDB building vectors will be within 1m (original 3m or *Worse) *TDB: Topographic Database

3rd Phase (2024-)

- Method Development to be continued...
- Operational use of AI/ML methods in everyday topographic data production work, in parallel with the new production system.
- More Information?
 - See GIM International Article https://www.gim-international.com/content/article/how-the-national-land-survey-of-finland-is-exploring-ai-technology
 - Contacts:
 - Dr. Lingli Zhu (<u>lingli.zhu@nls.fi</u>), Twitter: @lingli_zhu
 - Jani Kylmäaho (jani.kylmaaho@nls.fi), Twitter: @jkylmaaho

