3D webservices - where do we stand?

Emmanuel Belo
+41 21 619 10 25
emmanuel.belo@camptocamp.com
Camptocamp

- Open Source Service Provider
- Staff 49
- Switzerland, France & Austria
- Since 2001
Camptocamp: 3 divisions

GEOSPATIAL
- Web-GIS Portals
- Spatial Data Infrastructure (IDS)
- Mobile applications

BUSINESS
- Enterprise Resource Planning (ERP)
- Business Intelligence, Reporting

INFRASTRUCTURE
- Virtualization, Cloud Computing
- Automation of system administration
- Deployment of complex architectures

ADVICE, STUDY, R&D

IMPLEMENTATION

SUPPORT

TRAINING
Google Maps
Here maps (Nokia)
OpenWebGlobe
Geospatial 3D Web expectations?

■ 3D Scenes
 ○ Aerial imagery and terrain
 ○ Buildings with textures
 ○ Label and marker
 ○ Rich interaction (Navigate, pick, popup, measure, usw.)
 ○ Global perimeter, higher local resolution

■ Technology
 ○ **Web** (no plugin), Cross Platform and Cross Device
 ○ **Open Standards** and Formats
 ○ **Open Source**

■ What's available?
camptocamp
Web ?
WebGL!

- Web Graphics Library
- Javascript API for rendering interactive 2D/3D graphics within the web browser
- Hardware acceleration using the Graphics Processing Unit (GPU)
- WebGL Programs consist of:
 - Control code written in Javascript (CPU) and
 - Shader code that is executed on a computer's GPU
- No Plugin! Also in IE11!!!
- Mobile device ready: Firefox, Sony Android Browser, Opera
Open Standards ?
Standardizing and Merging worlds

- Geo: OGC
 - 3D Portrayal Services (Proposals: WVS WMS-Like & W3DS WFS-Like)
 - KML – XML/COLLADA
 - CityGML - representation, storage, and exchange
 - CZML (AGI/Cesium)?

- Geo: OSGEO
 - TMS (Cesium Terrain Server z.B)

- Web: Web3d
 - X3D - Extensible 3D Graphics

- Graphics: Khronos Group
 - COLLADA – eXchange / interoperability
 - glTF – graphic language Transmission Format
3D Portrayal Service (3DPS)

Goal:
- Standard service interface to visualize very large 3D geospatial databases online via Web-Browser and Mobile Devices
- 3D Scenegraph and image based rendering
Model Challenges

- Compact object representation
 - Bandwidth

- Progressive transfer
 - Streaming
 - LOD

- Fast Model Display
 - GPU intensive, reduce CPU usage

- Application/Software independent
 - Standard

Mesh encodings for X3DOM: Recent Advances by Max Limper and Johannes Behr, Fraunhofer IGD
X3D Geometries

- Basic primitives (Box, Cone Cylinder, Sphere)
- IndexedFaceSet (3D shape formed by constructing faces - polygons) `<IndexedFaceSet coordIndex='0 11 12 -1 12 1 0 -1 etc />'

 `<Coordinate point='0.7000 1.2000 0.0000, 0.6930 1.2177 0.0000, etc />'

 => Large HTML pages, CPU + Loading time

- X3dom optimizations

 - Binary Geometry employs several files to store the index and geometry data directly in the requested precision

 - Progressively Ordered Primitive (POP) Buffer
CZML - Cesium Language

- Describes
 - Graphical scene
 - Time-dynamic data

- Characteristics
 - JSON structure
 - Line, points, markers, models
 - Describes changes over time
 - Supports datastreaming
 - Extensible
glTF graphic language Transmission Format

- JSON used to describe node hierarchy
- Node hierarchy refers to EXTERNAL binary asset blobs
 - Geometry, Texture, Material
- Non-compressed asset blob format
 - Direct load in WebGL
- Extensible
 - Streaming and compression

Careful design of glTF uncompressed binary is giving good loading performance boost - even before compression.
Open Source Software ?
Open Source implementations

- PostGIS – stores and exports 3D data
 - Export X3D data: ST_AsX3D

- Geoserver
 - Provides a W3DS API (getScene & getTile)
 - X3D & Cesium Terrain API

- X3dom
 - JS API for displaying and interacting with X3D data

- Three.JS
 - Rich 3D model visualisation

- OpenWebGlobe & CesiumJS
 - Full geospatial suites to process and display/interact with 3D in the Web
PostGIS/Geoserver W3DS/X3D/X3DOM
X3DOM

- Experimental Open Source Framework
- Display 3D models with WebGL
- Web3D & W3C Standardizing Process
- Goal: 3D objects in the Web
- Easy to use (HTML5 DOM)
- Supports HTML Events (Ex: OnClick)
X3DOM – JS Library

Information

Description:
This 3D model is rendered by the X3DOM-
BVRrender: mode which refines and loads hierarchical
data dynamically corresponding to the view point.

3D-Model Statistics:
- Model: Puget Sound
- DataSet: 4096 x 4096 pixels
- Points: 16,777,281 (~46.5 Mio.)

Rendering Statistics:
- Rendering speed: 45.32 fps
- Currently drawn points: 1,663,287

Parameters
Three.JS

- Lightweight xBrowser JS library/API
- Goal: create and display animated 3D computer graphics on a Web browser.
- HTML5 SVG/WebGL
- Proprietary format + glTF
Three.JS examples

QGIS export (c) http://anitagraser.com/

Procedural city (c) http://mrdoob.com
OpenWebGlobe

- Helps you to create your own virtual globe applications running plug-in free in a web browser
- Allows the visualization of large scale image, elevation or other geospatial data
- OpenSource (MIT License)
CesiumJS

- Javascript Software with WebGL for displaying
 - 3D virtual globe
 - 2D map
 - 2.5D Collombus View
- Time-dynamic Scenes with CZML
- Multiple terrain sources
- Overlays:
 - Raster: WMS, TMS, OSM, Bing & Esri
 - Vector: glTF, CZML, KML, Shapefiles
- Extensible with plugins
Cesium – 3 views, WebGL
CZML 3D + time-dynamic display
Cesium – Terrain + Overlay
Cesium Sandcastle
OpenLayers 3 – Cesium Integration
Conclusion

- High activity in the 3D WebGL domain
 - Big Players set public expectations
 - Ongoing standardizations efforts
 - WebGL momentum (Microsoft is now on board)

- Consider:
 - Data quantity to be stored and processed in the backend
 - Data transfer and streaming with different LODs
 - Deliver data for the GPU, avoid CPU processing AND Provide access to semantics for the CPU
 - Web3D implementations have limited encoding possibilities applied to the geospatial world