Early Warning and Hazard Assessment of Glacial Lake Outburst Floods, Karakoram Mountains, China

Christoph Haemming, Matthias Huss, Urs Wegmüller, Daniel TOBLER et al.
(1) GEOTEST, (2) University of Fribourg, (3) GAMMA Remote Sensing

www.geotest.ch
Problem

Flooding along Yarkant River due to Glacial Lake Outbursts Floods (GLOF)

- Threat for > 1 Mio inhabitants
- Annual monetary loss > 10 Mio Euro
Objectives of the Yarkant River Project

> Establishment of an **Early Warning System** for GLOFs

> **Risk management** for the potential flood areas

> **Climate Change monitoring**

The project aim is to **avoid the unmanageable** (mitigation – land-use planning) and to **manage the unavoidable** (adaptation to climate change – Early Warning System).
Area of Interest
<table>
<thead>
<tr>
<th>Length [km]</th>
<th>Average width of glacier tongue in 2011 [km]</th>
<th>Maximum height of the ice dam in 2011 [m]</th>
<th>Area [km²]</th>
<th>Terminal altitude (valley floor) [m a.s.l.]</th>
<th>Altitude of firn line [m a.s.l.]</th>
<th>Highest altitude [m a.s.l.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>1.5 - 2</td>
<td>150</td>
<td>110</td>
<td>4’700</td>
<td>5’400</td>
<td>7’720</td>
</tr>
</tbody>
</table>

Page 5 GWF Geneva, May 9th, 2014 www.geotest.ch
Kyagar Glacial Lake

Length: 5.5 km; Width: 0.5 km

V = 95 million m3

Landsat-TM August 9th, 2002

Page 9 GWF Geneva, May 9th, 2014

GWF Geneva, May 9th, 2014
Kyagar Glacier lake with the damming glacier tongue in the front (1986).
Causes of floods

- **Snowmelt** in the upper catchment area (Karakorum Mountains)

- **Rainfall** in the Yarkant River catchment (approx. 50’000 km²)

- **Glacier Lake Outburst Floods** from the Shaksgam Valley (Keleqin River as tributary of Yarkant River)
Characteristics of Kyagar GLOFs

> 1954 – 2012: 22 floods were classified as GLOFs.

> Most GLOFs had outburst volumes between 40 – 80 million m³.

> GLOFs mostly occurred during late summer to early autumn.

Data redrawn after Zhang (1992) and Chen (2010)
Kyagar Glacial Lake

Outburst mechanism

approx. 40 m

subglacial drainage

East

West

1.3 km

4'810 m a.s.l.

50 m

Ice dam Kyagar Glacier

filled lake

X blocked channel
Early Warning System

Gauge and Warning Station at Kukulangar

Gauge and Warning Station at Cha Hekou

Satellite (SAR) remote sensing

End-user

22 h

Shache

Markit

Zepu

Server

Observation Station at Kyagar Glacier Lake

20 40 60 km

Kelegin River

Yarkant River

Hazard potential

Monitoring

Alarm

IGCIS Beijing, July 29th, 2013
Cha Hekou Station

2 radar sensors

Control unit: data logger, 2 cameras, satellite communication unit, solar panel

GWF Geneva, May 9th, 2014
Kuluklangan Station

> covers a large catchment area

> warning: melt-water, rainstorm and GLOF
Expedition to Kyagar
Kyagar Station

Daily camera images
Kyagar Glacier 2002 - 2011

Surface lowering rate > 5m/year (2002–2011)

Danger of GLOFs in the past and at present

Historic glacial lake volumes: > 200 Mio m3

Potential glacial lake volume 2014: 22 Mio m3
Kyagar Glacial Lake

Consequences?

a 2002
154 mio. m³

b 2011
22 mio. m³

Lake
Flux gate
approx. 2 km

Glacier
Flux gate
approx. 2 km
Results: Kyagar Glacier

Ice-flow speed derived from SAR offset tracking

> Highest flow speeds are found below the confluence of the two main branches of Kyagar Glacier.

> Clear **seasonal variation** in ice flow speed is observed along the entire ablation area.

> Slow-down during the winter season.
 → **reduced meltwater input** → basal sliding

> Pattern is typical for a **surge-type glacier** in quiescent phase.

Risk Management

Modeling of floods caused by GLOFs

→ Hazard indication map

→ Land-use planning
Risk Management

> without flooding

> with flooded areas
Risk Management

Modeling results

flood height [m]

- < 0.1
- 0.1 - 0.25
- 0.25 - 0.5
- 0.5 - 0.75
- 0.75 - 1
- 1 - 2.5
- 2.5 - 5
- 5 - 10
- 10 - 15
- > 15
Conclusions

- Climate Change adaptation is a global issue and therefore needs a close cooperation on the international level.

- Fully functional Early Warning System (satellite remote sensing and terrestrial observation and alarming stations) was established.

- During the last decade, the height of the ice dam decreased by more than one-third due to strong melt. Hence, the potential maximal glacial lake volumes decreased by more than 80% to approx. 22 million m3 in 2011.

- When a new surge front reaches the glacier tongue, this could lead to a thickening of the ice dam and hence an increase of the GLOF hazard potential in the near future.
Thank you