Best Practices for Spatial Analytics in a Data Warehouse

Hans Viehmann
Product Manager EMEA
Agenda

• Introduction

• Integration of Spatial Data into Business Intelligence environments

• Best Practices
 – Geospatial Warehousing on Engineered Systems
 – Geospatial Analytics on Streaming Data

• Summary
Basis of all work – a „Single Source of Truth“

with Spatial Data integrated

• consolidated data repository
 – for reporting, ad hoc queries, analytics, modelling
 – updated at regular intervals

• tools to set strategic goals, track initiatives and detect variances
 – ability to turn insight into action
Integrated Tools accessing Data Warehouse
using Oracle Mapviewer for visualization

Common Enterprise Information Model

- Common Metadata Foundation across all Data Sources
- Common Security, Access Control, Authorization, Auditing
- Common Request Generation and Optimized Data Access Services
- Common Clustering, Workload Management, & Deployment
- Common Systems & Operational Lifecycle Management

OLTP & ODS Systems
- Data Warehouse
- Data Mart
- Exadata
- OLAP Sources
- Packaged Applications (Oracle, SAP, Others)
- Unstructured & Semi-Structured
- Excel XML/Office
- Business Process

Scorecards
Interactive Dashboards
Reporting & Publishing
Ad-hoc Analysis
Office Integration
Search
Detect & Alert
Collaborate
Mobile
Embedded

Data Integration

Office Integration

Search
Detect & Alert
Collaborate
Mobile
Embedded
Agenda

• Introduction

• Integration of Spatial Data into Business Intelligence environments

• Best Practices
 – Geospatial Warehousing on Engineered Systems
 – Geospatial Analytics on Streaming Data

• Summary
Strategic Vision for Geospatial Data

Provide the Platform

• ubiquitous Spatial services in IT infrastructure
 – significantly lower costs
 – simplified application development
 – integrated operational systems

• enable Spatially-enabled solutions to focus on business context, not infrastructure services
 – Database and Application Server manage deployment infrastructure
 • Security
 • Scalability
 • Standards Compliance
 • Load Balancing
 • Failover
 • HW/SW Dependencies
 – support multiple application models with common data model
 • Java
 • GML
 • Future …
 • .Net
 • Web Services/SOA
Natively manage all spatial content

Points -- Locations of Interest

Lines -- Streets, Pipelines, cables, rail, etc.

Polygons -- Admin boundaries, sales territories, high risk zones

Web Services (OGC)

Satellite Imagery

Network Models -- Connectivity Analysis

Topologies

3D and LiDAR

Geocoding Routing
Oracle Spatial Technologies

- **Oracle Locator**: Feature of Oracle Database XE, SE, EE

- **Oracle Spatial**: Priced option to Oracle Database EE

- **MapViewer**: Java application and map rendering feature of Oracle Fusion Middleware

- **Workspace Manager**: Long transactions feature of Oracle Database SE, EE

- **Bundled Map Content**: Major roads, administrative boundaries (city, county, state, country) - worldwide coverage eg. from Navteq
Open and interoperable
Agenda

• Introduction

• Integration of Spatial Data into Business Intelligence environments

• Best Practices
 – Geospatial Warehousing on Engineered Systems
 – Geospatial Analytics on Streaming Data

• Summary
Oracle Strategy

Complete Stack

- Best-of-breed
- Open
- Vertical Integration
- Extreme Performance
- Engineered Systems

Complete Customer Choice

- On-premise
- Private Cloud
- Public Cloud
- Hybrid Cloud
Exadata Database Machine
An engineered system - compute, storage, networking

- **Database Grid**
 - Intel-based database servers, up to 128 cores
 - Oracle Linux or Solaris 11
 - Oracle Database 11g R2
 - 10 Gig Ethernet (to data center)

- **Storage Grid**
 - Intel-based storage servers, up to 168 cores
 - Up to 336 terabytes raw disk
 - 5.3 terabytes Flash storage
 - Exadata Storage Server Software

- **InfiniBand Network**
 - Internal connectivity (40 Gb/sec)
Key Exadata Innovations

• **Intelligent storage**
 - Smart Scan query offload
 - Scale-out storage

• **Hybrid Columnar Compression**
 - 10x compression for warehouses
 - 15x compression for archives

• **Smart Flash Cache**
 - Accelerates random I/O up to 30x
 - Doubles data scan rate

Data remains compressed for scans and in Flash

Benefits Multiply

Compressed

Uncompressed
Oracle Exadata for Spatial Workloads

• Oracle Spatial is particularly suitable for the Exadata architecture
 – CPU intensive geospatial calculations
 – excellent use of parallelism
 – load distribution between server nodes and storage heads
 – index operations benefiting from large memory

• Breaks new boundaries for ingesting spatial data
 – using the fast I/O and high network bandwidth

• same Architecture for Transaction Processing, Data Warehousing, Spatial Data Infrastructure, …
Use Cases from Real-world Experiences

1. Re-Insurance Company
 • Risk management in a hurricane scenario

2. US Rail
 • Bulk nearest neighbor queries to find closest track, and project reported train positions onto tracks

3. Validate home appraisals for a Government Sponsored Enterprise (GSE)
 • Find all the parcels touching parcels to validate appraisals

4. Satellite Imagery Provider
 • Find all the useful portions of cloud covered imagery
Agenda

• Introduction

• Integration of Spatial Data into Business Intelligence environments

• Best Practices
 – Geospatial Warehousing on Engineered Systems
 – Geospatial Analytics on Streaming Data

• Summary
Streaming Event-Driven Architecture (EDA)

- **Streams/Relations**
 - From any source: data streams, web services, Java, Database

- **Adapters**
 - Translate external events/data into java objects for processing

- **Processes**
 - Set of queries applied to the streams

- **Listeners**
 - Handle triggers raised by the processors

- **Events**
 - Implemented as JavaBean or Map

EDA Java Application Container

- **Data/Msg. Feeds**
- **EDA Java Application Container**
 - **Data Feed Adapters**
 - **Process Events**
 - **User Code (Plain Java)**

EDA Features

- **Incoming Data Streams**
 - 1,000,000+ Messages/Sec

- **Aggregate, correlate, filter data**
 - Can Handle Unlimited Queries

- **Latency**
 - Microsecond Latency (Avg.)

- **Resulting Data**
 - Fed to vast business opportunities with Java language

Oracle
Continuous Query Language (CQL)

- Stream-Relation algebra
 - Continuous semantic
 - Driven by event, driven by time
 - Allows us to leverage SQL principles/implementation

```
SELECT AVG(price)
FROM ExchangeStream [RANGE 1 MINUTES SLIDE 10 SECONDS]
WHERE symbol = 'ORCL'
```
Real-time processing using spatial data

```
SELECT *
FROM in-channel[now] as S,
     SpatialData-Relation as R
WHERE contains@spatial(R.geometry, S.pos, 0d) = true
```
Implementation example – Sascar (fleet management)
Agenda

• Introduction

• Integration of Spatial Data into Business Intelligence environments

• Best Practices
 – Geospatial Warehousing on Engineered Systems
 – Geospatial Analytics on Streaming Data

• Summary
Summary – best practices

• for integration of spatial data with enterprise data use a standards-compliant spatial database
 • look out for data integration tools, process integration capabilities and seamless BI platform besides map display

• if you need significant processing power and need to save cost, consider Exadata

• if you need spatial analytics on streaming data, consider CEP (complex event processing) tools
 • presentation on Cloud Computing and „Big Data“ in Cloud Computing session Friday, 9:00am
Hardware and Software

Engineered to Work Together
“Oracle continues its remarkably consistent strategy of including spatial capabilities within its database and application deployment platform. … Oracle offers a wide range of spatial capabilities across its product line that provide foundation-level SIM capabilities for enterprise applications – including industry-specific applications. Oracle maintains a dominant position as the spatial data repository for medium-sized and large spatial systems. …”

David Sonnen and Dan Vesset

Source: IDC #224740. Worldwide Spatial Information Management 2010-2014 Forecast and 2009 Vendor Shares