

Saving 200 billion litres of water by 2020

Mahiti

Vijay Rasquinha

Mahiti - An Introduction

Our Vision

One billion lives positively impacted through effective use of technology by 2030

Our Mission

To create and deploy technology to enhance Efficiency, Effectiveness and Scalability of social development programs

Water stress around the globe

Objective

To help 6300 canal-irrigated paddy farmers in 180 villages in of Raichur and Koppal districts to shift from a water-intensive flood irrigation regime to a rationale use of canal water through **ICM** Integrated crop management, comprising both **NPM**(Non-pesticidal Management) and **SRI** (System of Rice Intensification) packages of practices, and through this save 200 billion litres of canal water by 2020.

GIS/MIS based System

- A GIS/MIS digital data backbone is being implemented to ensure the Climate-Neutral Village's visibility, transparency and accountability through Internetbased aping and location services.
- Each village will be place-marked, as will each household and each of their plots of land that are covered under the Mitigation and/or Adaptation interventions.
- Each of the Village, Household and Plot place-markers will be accompanied by datasets that will define and capture specified fields of information.
- The GIS/MIS backbone builds on this primary data that will be entered into each dataset by field staff.

GIS/MIS based System

- This primary data will be aggregated and presented at household, village, Gram Panchayat, Hobli/Mandal/Revenue Circle, Taluk, District, State and Country levels.
- The GIS/MIS backbone will also present aggregated reports at all levels by Donor, NGO and intervention.
- The GIS/MIS data backbone is working to allow the donor and the affected community to interact online and in real-time.

How its done...

Household Details

Farmer Details

Impact Measurement

Implementing Geospatial Data

- · Real time data of farmers across villages, district, or geo fenced area
- Water usage/saving data
- Types of crops being cultivated and link to market demand
- Planning route maps for field workers
- Linkages to MFI and agri loans
- Analytics
- Enabling IOT devices to reduce human interventions
- Replicating models in regions having similar conditions.