Improving efficiency of water utilities: practical examples

Slavco Velickov, PhD - Water Industry Director EMEA Geospatial Forum, Rotterdam, 23-26 May 2016

Agenda

- 1.Bentley at a glance
- 2. Business drivers (trends) in the Water Industry
- 3. Water solutions overview
- 4. Improving efficiency, examples:
 - 1. Active Leakage Management (finding leakage hot-spots)
 - 2. Geospatially enabled Asset Management (leakage and break records analysis)
 - 3. Pumping scheduling and pressure optimization (saving water and energy)
- 5. Take away message6. Contact information

	1		
1		T.)
1	A		
	E R	à	an.

Water and Wastewater Business Drivers

© 2016 Bentley Systems, Incorporated

Water Utilities Drivers

- Leakage Reductions
- Energy Efficiency
- Pressure Control
- Water Safety (Quality)
- Pipe Renewal Planning
- Master Planning
- Real-time Operations
- Emergency Response
- Staff Capacity Development and Resources

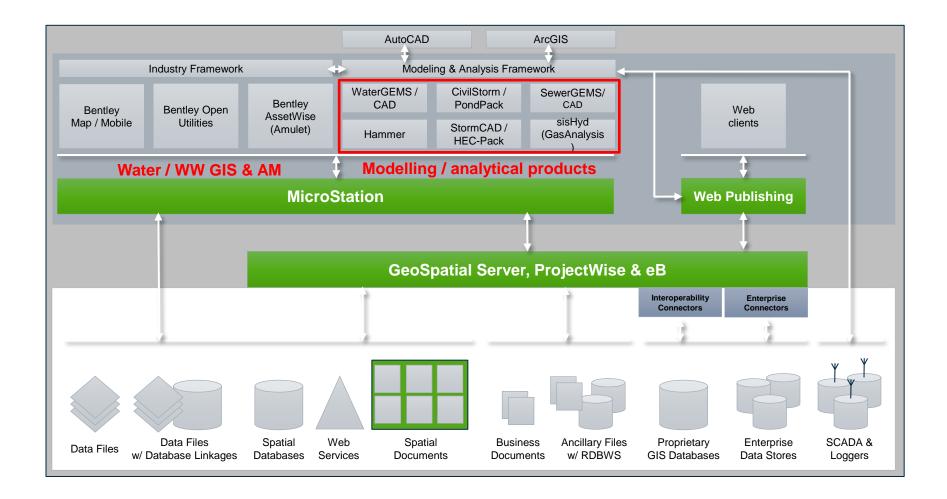
Wastewater / Stormwater

- Similar Drivers as for Clean Water
 - Prevent CSO / SSO with Models
 - Master Planning
 - Water Quality Analysis
 - Efficiency & Skills
- Inspection/Condition Assessment
- Implement BIM / ISO 55000
- WWT Plant Operation and Efficiency

Bentleu

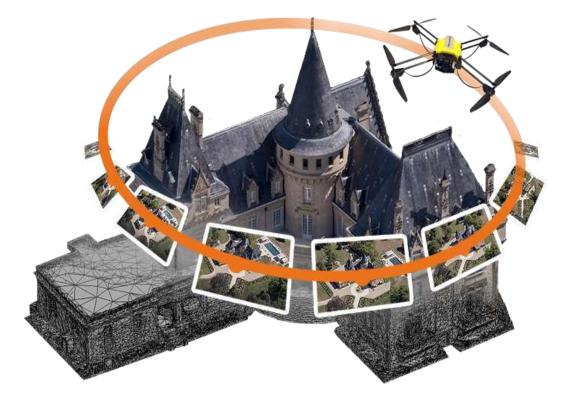
Everyone's Drivers

Save Water, Money, Time, Energy, Environment



Bentley Water Solutions: Addressing the Life Cycle of the Infrastructure

Water Industry Solutions Offerings



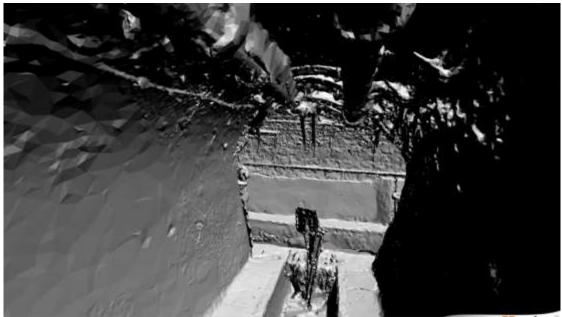
Bentley Haestad Product Line

		WaterGEMS. Water distribution modeling with geospatial integration
		WaterCAD. Water distribution modeling and design
		Darwin Designer. Network design automation
		Darwin Calibrator. Model calibration optimization
	WATER	Darwin Scheduler. Energy efficiency optimizer
		Pipe Renewal Planner. Asset investment planning tool
TT		HAMMER. Transient flow analysis and modeling
HAESTAD		SCADAConnect. Supervisory and control data integration
METHODS		SewerGEMS. Urban sewer modeling with GIS integration
WATER SOLUTIONS	SEWER	SewerCAD. Sanitary sewer design and modeling
		CivilStorm. Stormwater management and dynamic modeling
30 years		StormCAD. Storm sewer design and modeling
130,000 users	CTODM	PondPack. Detention pond design and analysis
170 countries	STORM (flood)	HEC-Pack. River basin modeling, reservoir optimization
Acquired by Bentley in 2004	(1000)	CulvertMaster. Culvert design and analysis
Bentley in 2004		FlowMaster. Hydraulics calculator
		Amulet. Real-time forecasts and dashboards platform
		WaterObjectsNet development environment
		Mohid. 2D / 3D Catchment and costal modelling solution

Bentley Reality Modelling for Water Industry

ContexCapture Photos to 3D models | Buildings, Plants Ground Infrastructure (asset conditions)

LumenRT


Visualize and Communicate | Infrastructure Models, Designs, Model Results

Bentley

Example: Paris 500 km of sewers mains

REQUIREMENT

 Model and refresh a sewer infrastructure (500km long) including pipes, cables and other equipment

SOLUTION

 Multi-directional camera system (like Trimble v10) + specific lighting system + Smart3DCapture Ultimate

RESULT

 Photorealistic 3D model, helping users to detect and extract structure components from the mesh and point cloud

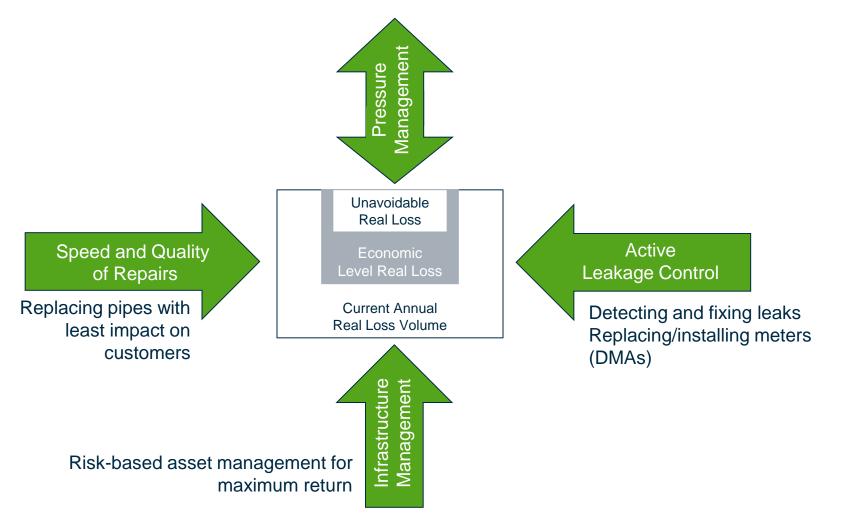
1) Water Loss

Leakage Reduction by pressure management, hydraulic modelling, measured data and optimization techniques

Remediating Water Loss is Complex

- It's impossible to find and fix all leaks (economic level of leakage)
- Partial implementation of a water loss plan is highly likely to fail
- Coordination between all components of a water loss program is required

"Many practitioners make common mistakes- they may have the false impression that each time a leak is repaired, physical loss is reduced by the volume saved..."


> Vermersch and Rizzo Source: IWA's Water21 Magazine, April 2014

(Courtesy Dr. Thomas Walski)

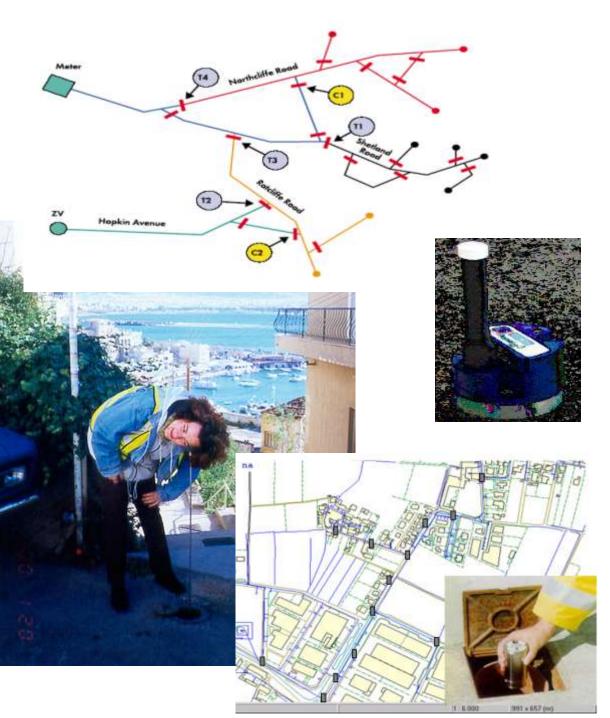
Strategy: A Long-term Approach with Immediate [short-term] Benefits

Implement IWA best / good practices

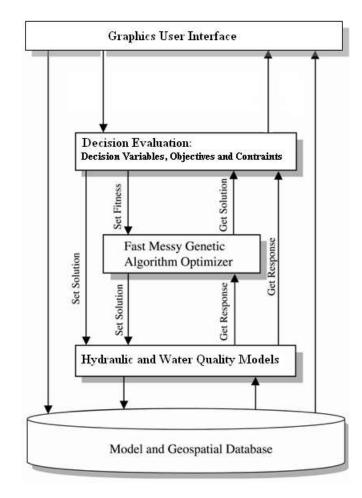
Bentley

Current Practice

1. Assessment


water balance or water auditing based upon water infrastructures' physical data and some statistics

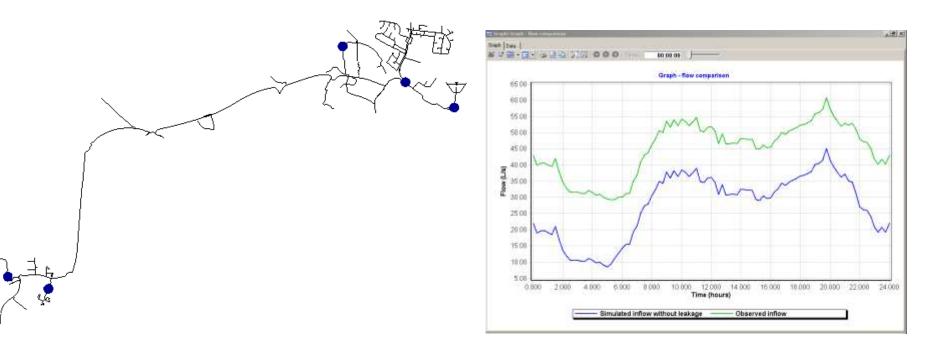
2. Pressure Management


- Divide the network in Pressure Zones and DMAs (how detailed)
- Use hydraulic model for PRVs including pumps optimisation
- Install PRVs to manage MNF

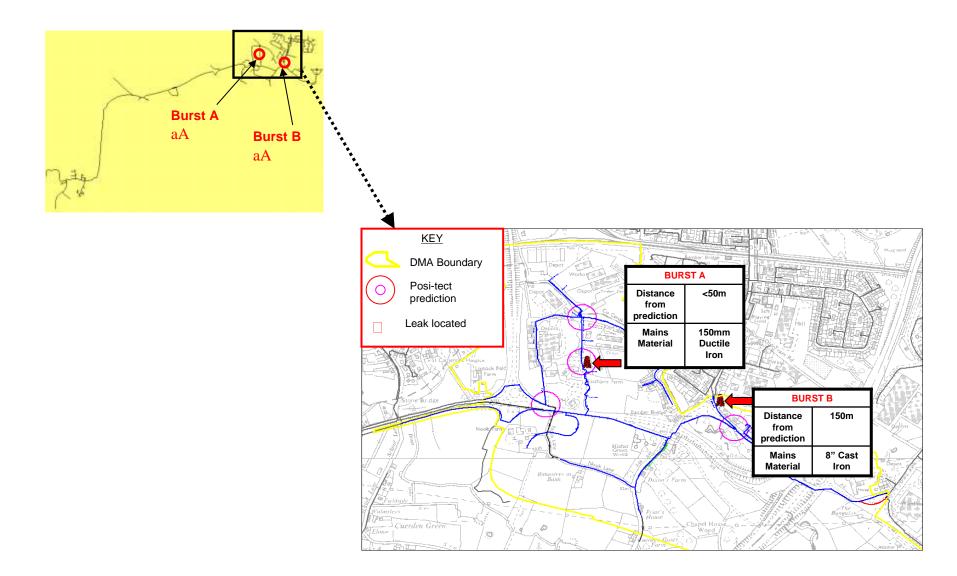
3. Active Leakage Detection

- Sounding for leaks
- Step-testing
- Acoustic loggers (noise correlators)
- Smart balls
- Use hydraulic model and measured (Scada) data

Bentley Integrated Framework: Leakage Detection & Model Calibration

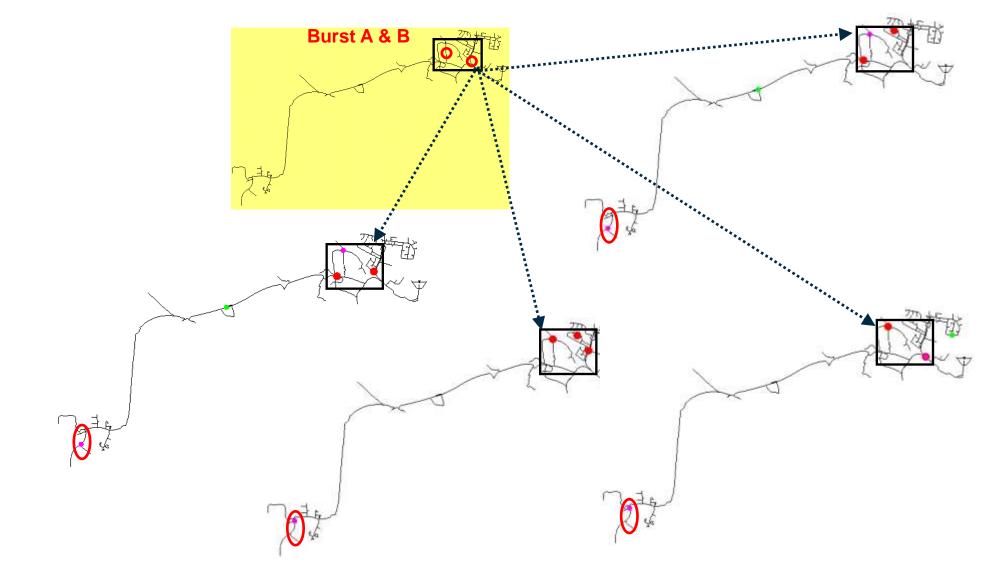


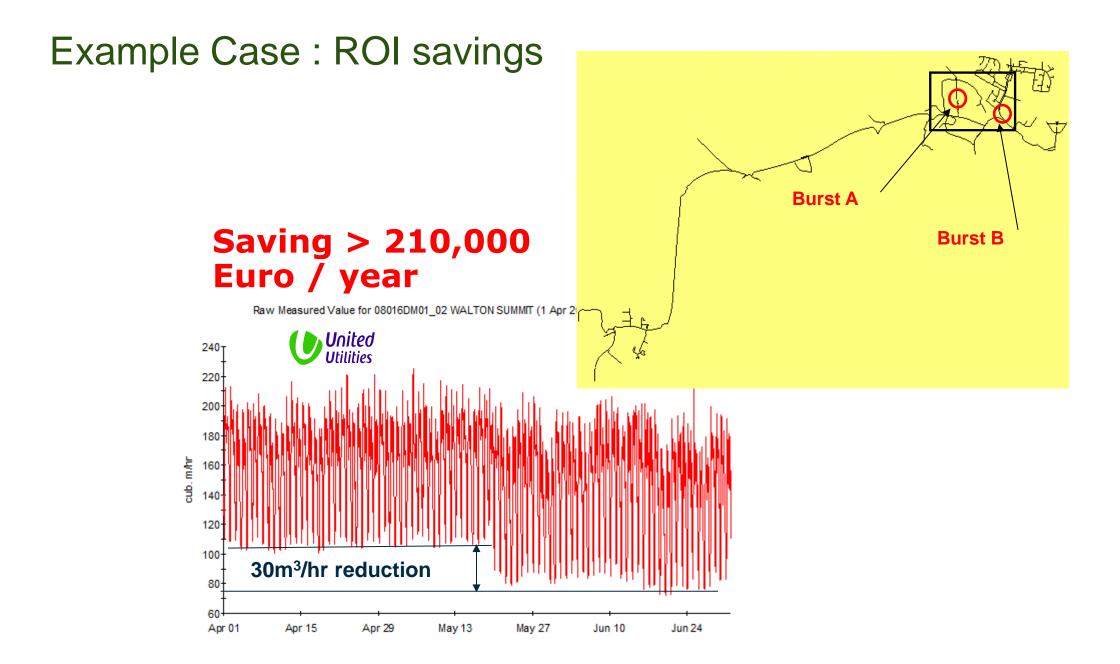
WaterGEMS (Darwin Calibrator)

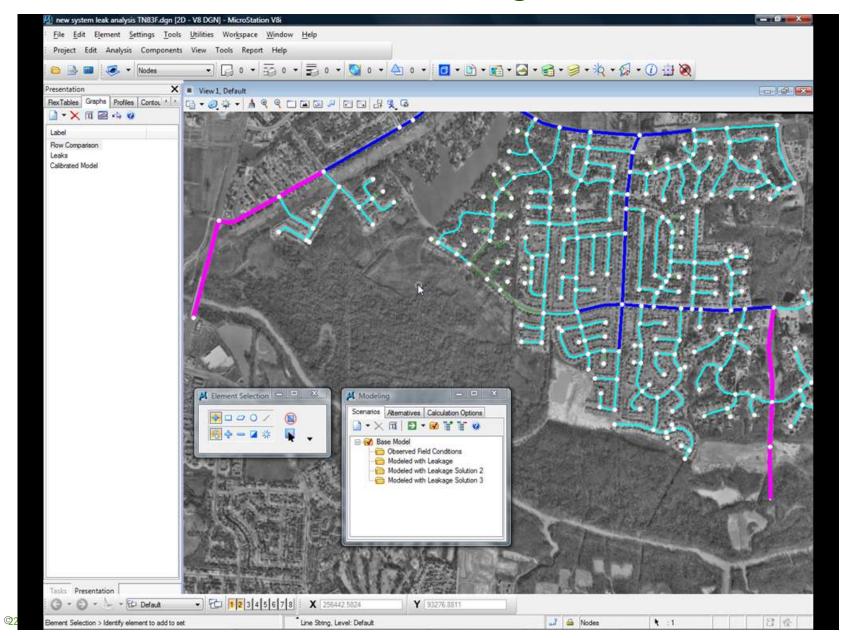

		.wtg)	- 1				_ [
) • 🗙 🏛 🔁 - 🛡 🗎 🕋 🥝		ata Snapshots Roughness	Groups [Demand Groups Statu	us Elements Calibration (Criteria Notes	
) 📐 Leakage Study - one 📃 🔺	🎽 🖣	$1 imes \overline{\mathfrak{u}}$	Re	presentative Scenario:	2157: Leakage Detect		
🖻 – 💡 Leakage Detection at 3.15		Labal			Label	Date	
🖻 🖷 Solutions	Label All Snapshots (96)					2000	
Solution 1							
🖻 – 💂 Leakage Detection at 3.15 more) ata 0 hr					
⊡-¶⊒ Solutions) ata 0.15 hr	. 1	Field Data 0 hr		1/1/2000	
Solution 1	Field Data 0.3 hr Field Data 0.45 hr			Field Data 0.15 hr		1/1/2000	
Solution 2			. 3	Field Data 0.3 hr		1/1/2000	
E)ata 1 hr		Field Data 0.45 hr		1/1/2000	
En - Eakage Detection at 3.15 +)ata 1.15 hr		Field Data 1 hr		1/1/2000	
Solutions)ata 1.3 hr		Field Data 1.15 hr		1/1/2000	
Solution 2)ata 1.45 hr	ान				•
Solution 3	Field D)ata 10 hr					
⊡ 💂 Pattern Optimization at 0.0	Obser	ved Target Boundary Over	ides Den	nand Adjustments			
😑 🕼 Solutions 🛛 📖	l 🗋 🗎	🖹 🗙 🚯 📣					
E-III Solutions							
		Y S S S S S S S S S S S S S S S S S S S		Element	Attri	bute	
Solution 1		Field Data Set		Element			
Pattern Optimization at 0.15		Field Data Set Field Data 0 hr		Element 711: J-656	Hydraulic Grade	(m)	
		Field Data Set Field Data 0 hr Field Data 0 hr		Element 711: J-656 377: J-322	Hydraulic Grade Hydraulic Grade	(m) (m)	
		Field Data Set Field Data 0 hr Field Data 0 hr Field Data 0 hr		Element 711: J-656 377: J-322 187: J-132	Hydraulic Grade Hydraulic Grade Hydraulic Grade	(m) (m)	
Colution 1 → Pattern Optimization at 0.15 → Colutions → Colutions → Colution 1 → Pattern Optimization at 0.3 → Colutions → Colutions → Colutions		Field Data Set Field Data 0 hr Field Data 0 hr Field Data 0 hr Field Data 0 hr		Element 711: J-656 377: J-322 187: J-132 1807: P-872	Hydraulic Grade Hydraulic Grade Hydraulic Grade Discharge (L/s)	(m) (m) (m)	
Image: Solution 1 Image: Solution 1 <	1 2 3 4 5	Field Data Set Field Data 0 hr Field Data 0 hr Field Data 0 hr Field Data 0 hr Field Data 0 hr		Element 711: J-656 377: J-322 187: J-132 1807: P-872 486: J-431	Hydraulic Grade Hydraulic Grade Hydraulic Grade Discharge (L/s) Hydraulic Grade	(m) (m) (m) (m)	
Image: Solution 1 Image: Solution 2 Image: Solution 3 Image: Solution 3 Image: Solution 3 Image: Solution 3 <	1 2 3 4 5 6	Field Data Set Field Data 0 hr Field Data 0 hr		Element 711: J-656 377: J-322 187: J-132 1807: P-872 486: J-431 322: J-267	Hydraulic Grade Hydraulic Grade Hydraulic Grade Discharge (L/s) Hydraulic Grade Hydraulic Grade	(m) (m) (m) (m) (m)	
Control Contr	1 2 3 4 5 6 6 7	Field Data Set Field Data 0 hr Field Data 0 hr		Element 711: J-656 377: J-322 187: J-132 1807: P-872 486: J-431 322: J-267 247: J-192	Hydraulic Grade Hydraulic Grade Hydraulic Grade Discharge (L/s) Hydraulic Grade Hydraulic Grade Hydraulic Grade	(m) (m) (m) (m) (m)	
Image: Solution 1 Image: Solution 2 Image: Solution 3 Image: Solution 3 Image: Solution 3 Image: Solution 3 <	1 1 2 3 4 5 6 7 7 8	Field Data Set Field Data 0 hr Field Data 0 hr		Element 711: J-656 377: J-322 187: J-132 1807: P-872 486: J-431 322: J-267	Hydraulic Grade Hydraulic Grade Hydraulic Grade Discharge (L/s) Hydraulic Grade Hydraulic Grade	(m) (m) (m) (m) (m)	

Example Case: system conditions

- DMA system model owned by UUW
- 20 km pipelines
- 400 properties
- 5 pressure loggers and one flow meter



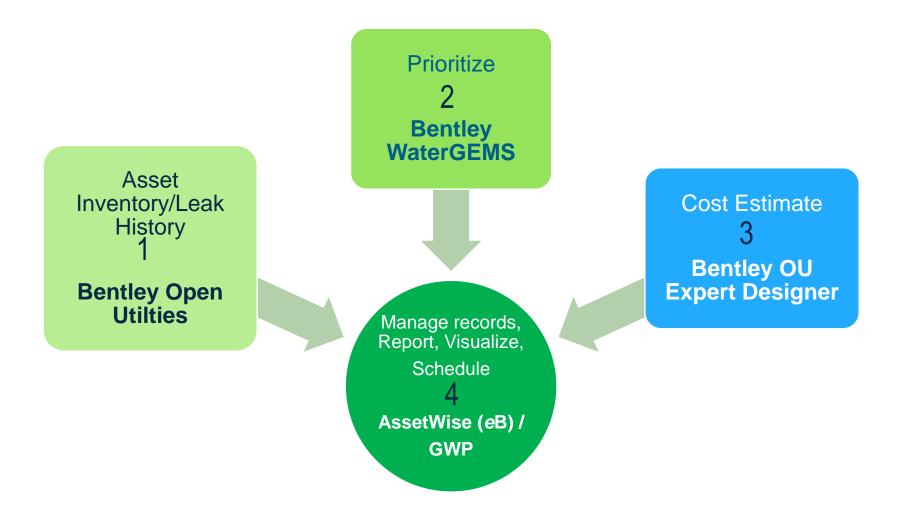

Example: previously detected pipe bursts



Example Case: results comparison (sensitivity)

Video: WaterGEMS leakage detection

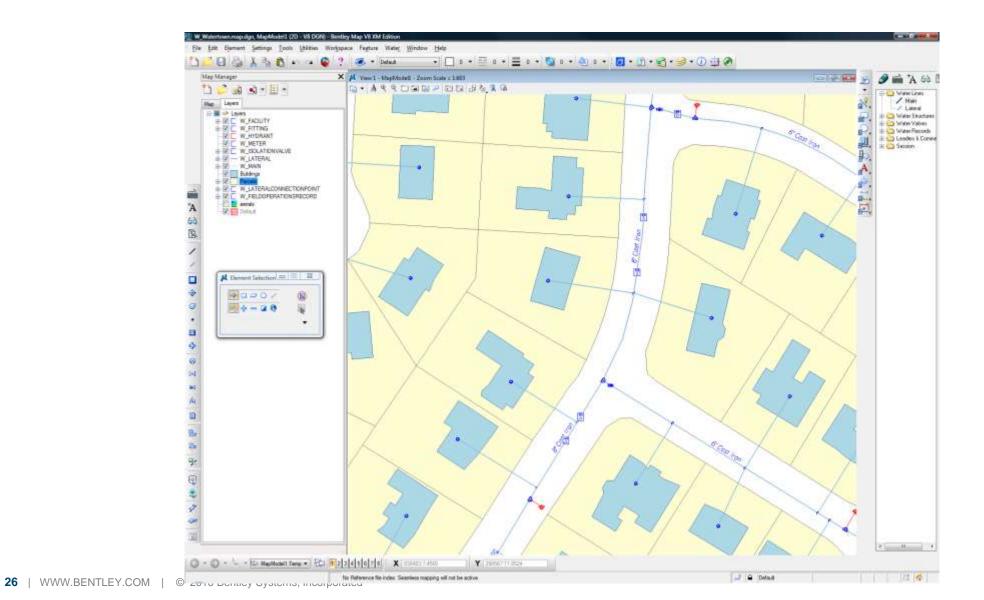
22 | WWW.BENTLEY.COM |



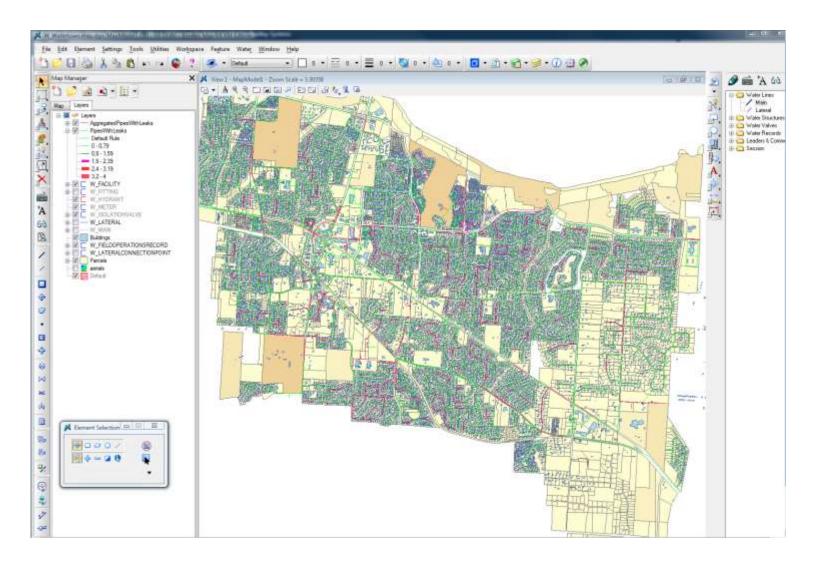
2) Capital Investment Planning (pipe renewals)

Water Mains Asset Management leakage and break records geospatial risk analysis

Example: Pipe Assets Renewal Planning



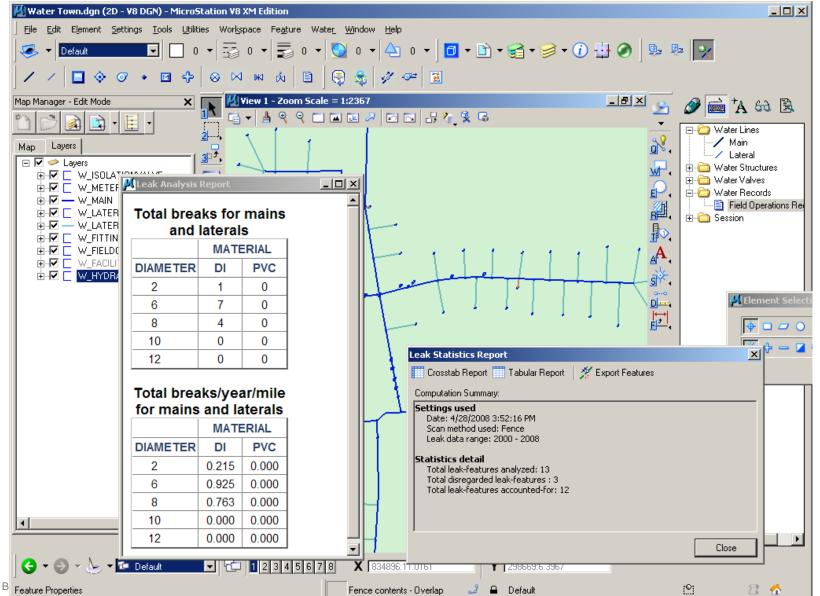
Manage Leak Records


- Most utilities keep leak records
- Many forms
 - Paper records
 - Databases
 - Spreadsheets
 - Shapefiles
 - Work orders
- Import to Bentley Water
- Need x-y coordinates (georeference)

Bentley

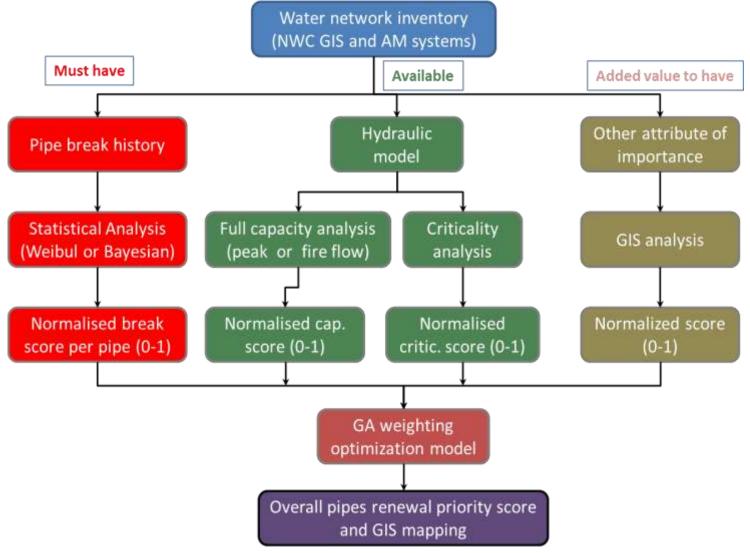
Spatially View Leak Locations

Cluster Thematically Bad Pipes


Diameter,	Breaks	Break Rate,
in.		break/yr/km
6	25	0.105
8	15	0.082
12	8	0.062
16	2	0.041
24	3	0.056

Look for Relationships

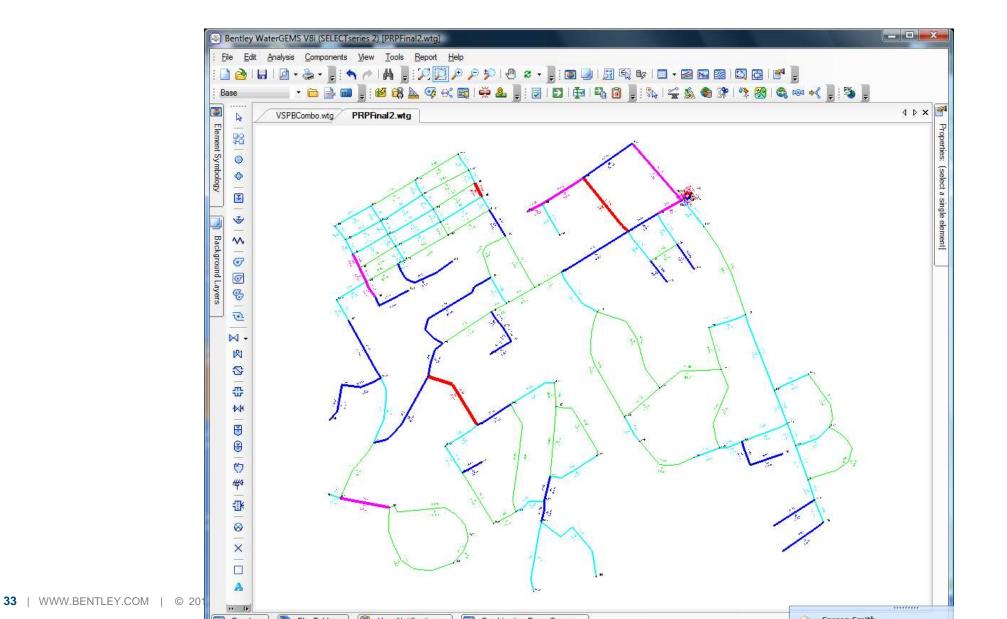
	Circumferential breaks	Longitudinal breaks	Corrosion holes
Cast Iron	73	7	4
Ductile iron	12	2	5
PVC	23	17	0
Steel	2	1	12


Thematic Maps & Reports

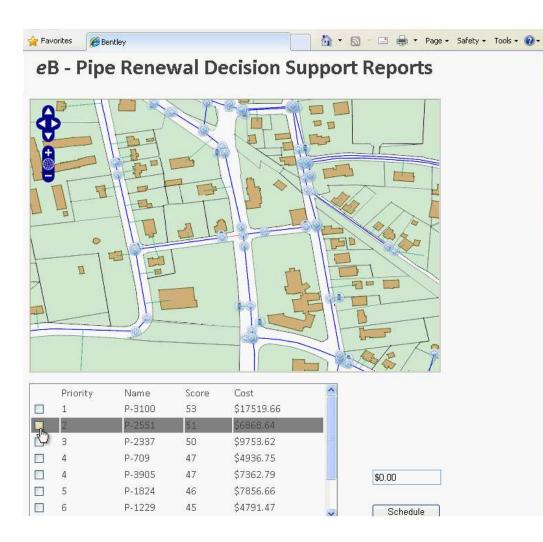
Bentley

30 | WWW.BENTLEY.COM | © 2016 B Feature Properties

WaterGEMS: Pipe Renewal Planner Tool workflow

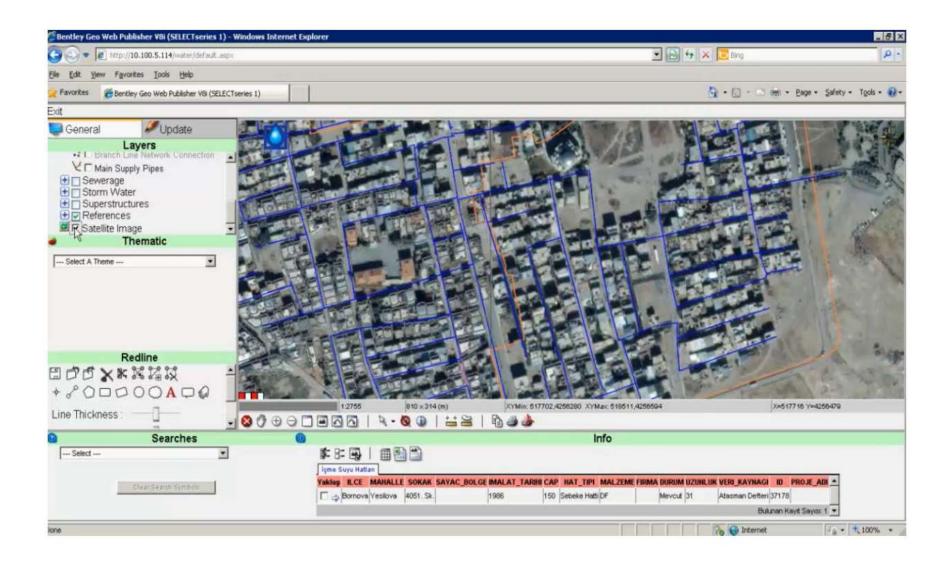


31 | WWW.BENTLEY.COM | © 2016 Bentley Systems, Incorporated


Pipe Renewal Planner Results

፤ 🛐 🔁 🕇 🥝 💦 Re	presentative Scen	ario:		Base	•			•					
enewal Planner - 1	ieneral Predefined	Aspec	ct Options	Result	3								
ng materal		ID	Label	Pipe Score	Raw Score (Pipe Break) (breaks/yr/mi)	Score (Pipe Break)	Raw Score (Criticality) (%)	Score (Criticality)	Raw Score (Capacity) (ft/s)	Score (Capacity)	Diameter (in)	Length (ft)	Mat ria
	366: P-131	366	P-131	62	0.082	4	24.6	100	8.71	83	6.0	10.55	Ca
	364: P-130	364	P-130	61	0.082	4	24.6	100	8.45	80	8.0	5.03	Ca
8	33: P-34	83	P-34	56	0.070	4	15.7	64	10.56	100	6.0	520.00	PVC
1	145: P-68	145	P-68	53	1.989	100	4.9	20	4.22	40	6.0	120.00	As
	221: P-115	221	P-115	52	0.285	14	23.3	95	4.89	46	6.0	520.00	Ca
4	40: P-11	40	P-11	49	0.610	31	24.6	100	1.84	17	8.0	200.00	Ca
	370: P-133	370	P-133	46	0.082	4	24.6	100	3.59	34	8.0	9.91	Ca
	371: P-134	371	P-134	46	0.082	4	24.6	100	3.57	34	8.0	8.71	Ca
	223: P-116	223	P-116	43	0.082	4	17.3	70	5.81	55	6.0	360.00	Ca
1	127: P-59	127	P-59	42	1.189	60	7.4	30	3.85	36	6.0	110.00	As
	218: P-113	218	P-113	42	0.082	4	19.0	77	4.65	44	6.0	560.00	Ca
1	129: P-60	129	P-60	39	1.109	56	7.4	30	3.45	33	6.0	120.00	As
2	225: P-117	225	P-117	39	0.082	4	17.2	70	4.48	42	6.0	120.00	Ca
5	58: P-20	58	P-20	38	0.332	17	1.7	7	9.60	91	6.0	380.00	Du
9	95: P-40	95	P-40	38	1.126	57	7.4	30	2.88	27	6.0	200.00	PVC
1	102: P-44	102	P-44	38	0.070	4	12.8	52	6.14	58	6.0	300.00	PVC
1	117: P-53	117	P-53	37	0.229	12	2.2	9	9.60	91	6.0	140.00	As
3	38: P-10	38	P-10	35	0.082	4	24.6	100	0.25	2	8.0	240.00	Ca
2	220: P-114	220	P-114	35	0.082	4	18.9	77	2.69	25	6.0	445.00	Ca
2	229: P-119	229	P-119	35	0.082	4	2.6	11	9.65	91	6.0	150.00	Ca
	24: P-3	24	P-3	35	0.054	3	21.5	87	1.62	15	8.0	700.00	Du

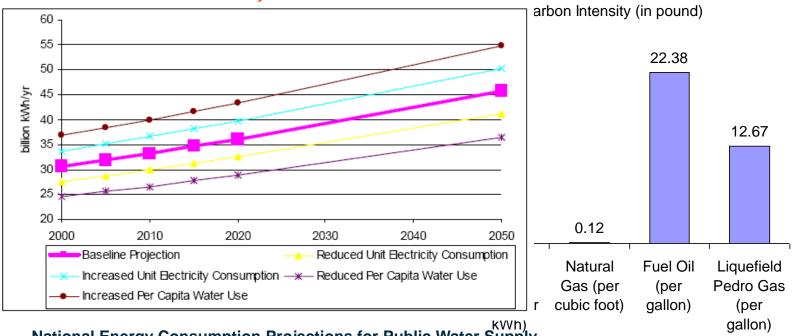
Risk Map: Prioritization of Pipe Replacements



*e*B – Report, Visualize, Schedule Renewals

- Customizable
 Dashboard
- None Technical Presentation
- Easy to read, easy to use
- Integrated Spatial Map
- Integrate with Enterprise Workflows
- Visualize and Approve

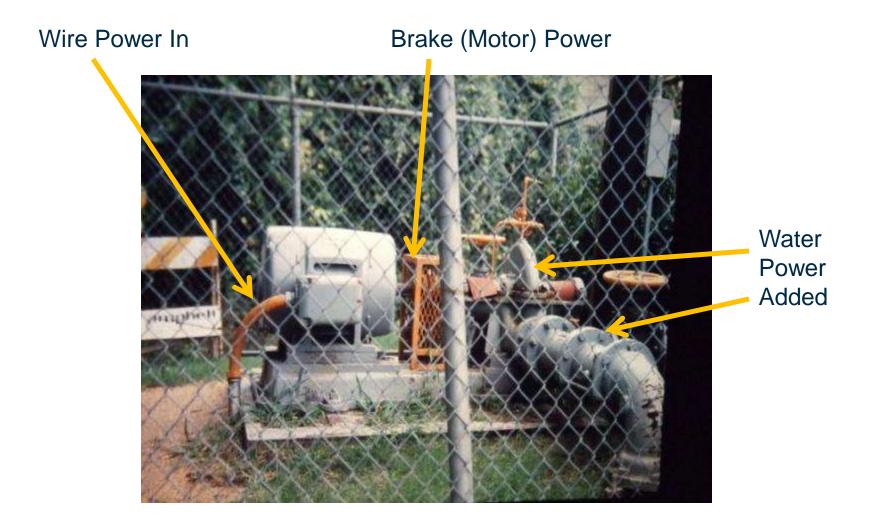
Or Publish with Geo Web Publisher (mobile as well)


3) Pumping Scheduling

Optimizing Pumps Operation for Minimum Energy Usage in Water / Wastewater / Stormwater Systems

Energy Consumption

- Water is pumped throughout system
- Adequate pressure is maintained by pumping
- Pumping results in high energy consumption
- $CO_2 = ExC_{intensity}$


National Energy Consumption Projections for Public Water Supply

Which pump is wasting energy?

Overall (wire-to-water) Efficiency = Water Power/Input Power

Pump Efficiency = Water Power/Motor Power

Pump Power and Efficiency

Water Power (hp) = Q * h * S / efficiency

Wire-to-Water Efficiency = Pump x Motor x Drive Efficiency

Reduce Energy by Optimal Pump Scheduling

- What to schedule
 - Which pump is on duty
 - When pump is on duty
 - What speed is on duty
 - Which Tanks to utilise
- Goal
 - Minimize energy consumption
 - Minimize total energy cost
- Supply requirements
 - Water demand and hydraulics
 - Manage pressure constrains (water loss)
 - Deliver water quality

Bentley[®]

Formulation (mathematical optimization)

• Search for:
$$\vec{H} = (h_{i,t})$$
 $i = 1, 2, ..., N_{ps}$, $t = 1, ...$
• Minimize: $C = \sum_{p=1}^{N_p} C_p$
• Subject to: $h_{\min} \le h_{i,t} \le h_{\max}$
 $v_{\min} \le v_{j,t} \le v_{\max}$
 $\omega_{\pm} \le \omega_{\pm} \le \omega$

Where $h_{i,t}$ is the target hydraulic head of pump station *i* at time *t*

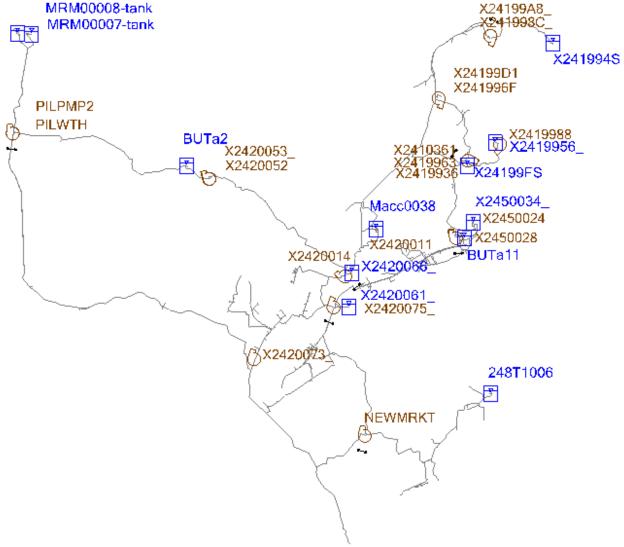
min p max

- $v_{j,t}$ is the flow veolcity of pipe *j* at time *t*
- ω_p^{μ} is the relative speed factor for pump p,
- $N_{\rm DS}^{\prime}$ is the number of pump stations,
- is the energy cost of pump *p*, is the number of pumps, C_n
- N_p
- is the total energy cost of the pumps,

 h_{min} and h_{max} are the minimum required and maximum allowed hydraulic head,

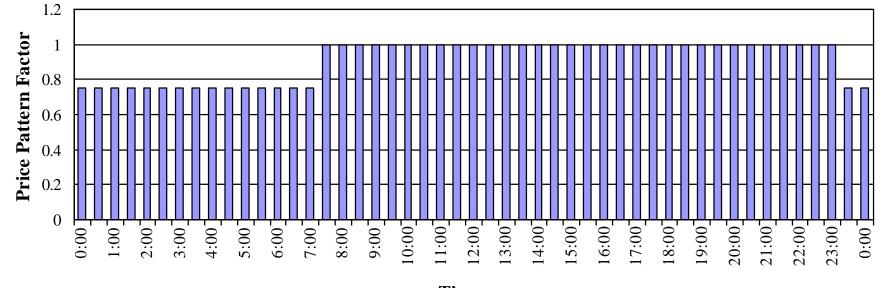
 v_{min} and v_{max} are the minimum required and maximum allowed flow velocities

Bentley


Energy Cost Analysis Tool

	Scenario:	F - 1 ▼	Daily C	iost:		75.0)	\$									
Pump Usage Overall Energy Used: 964 4059 kWh/MG Overall Energy Used: 192.8312 \$/MG Overall Unit Energy Cost: 192.8312 \$/MG Person PMP-1 PMP-1 PMP-1 PMP-1 PMP-1 Promp PMP-1 PMP-1 PMP-1 PMP-1 PMP-1 PMP-1 Promp PMP-1 PMP-1 PMP-1 PMP-1 PMP-1 PMP-1 PMP-1 Promp PMP-1 PMP-1 </td <td></td> <td></td> <td>Usage</td> <td>Cost:</td> <td></td> <td>150</td> <td>.0</td> <td>s</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Usage	Cost:		150	.0	s									
Image: Property P			Overall	Overall Energy Used:		964	964.4059		vh/MG								
Order Description Image: Final Storage Power Peak Demands Volume Vo	☐ ☐ Time Details ☐ ☐ ☐ Pumps 																
PMP-3 C PMP-4 Volume Pumped (Increme (Cumulati Ntal) (MG) Volume Volume (WG) Volume Pumped (WG) Pumped Pwer (%) Pumped Water (%) Pumped Power (%)			Results	Graph													
Storage Volume (nerv) Volume (s) Volume (D E														
0 0.00 <t< td=""><td>🔂 🔂 Storage</td><td></td><td></td><td>Pumped (Increme ntal)</td><td>Pumped (Cumulati ve)</td><td>Power</td><td>Efficiency</td><td>Water Efficiency</td><td>Efficiency</td><td>Power</td><td>Used (Increme ntal)</td><td>Used (Cumulati ve)</td><td>Price</td><td>Cost (Increme ntal)</td><td>Cost (Cumulati ve)</td><td>Unit Volume</td><td>Speed Factor (Energy Cost</td></t<>	🔂 🔂 Storage			Pumped (Increme ntal)	Pumped (Cumulati ve)	Power	Efficiency	Water Efficiency	Efficiency	Power	Used (Increme ntal)	Used (Cumulati ve)	Price	Cost (Increme ntal)	Cost (Cumulati ve)	Unit Volume	Speed Factor (Energy Cost
Image: Note of the sector of the se				0.00		0.0				0.0		0.0					0.000
Image: Note of the sector of the se																	
Image: Note of the sector of the se																	
Image: Note of the system 0.00 0.27 41.7 41.7 100.0 6.4 5.9 0.20 1.2 476.2113 1.000 Image: Note of the system 0.00 0.01 3.4 51.1 100.0 6.7 6.4 12.3 0.20 1.3 2.5 290.9224 1.000 Image: Note of the system 0.01 0.01 0.00 0.00 100.0 0.00 6.7 6.4 12.3 0.20 1.3 2.5 290.9224 1.000 Image: Note of the system 0.01 0.00 0.00 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																	
Image: Constraint of the system 0.00 0.01 3.4 51.1 100.0 6.7 6.4 12.3 0.20 1.3 2.5 290.9224 1.000 Image: Constraint of the system 0.01 0.01 0.00 0.00 100.0 0.00 6.7 6.4 12.3 0.20 1.3 2.5 290.9224 1.000 Image: Constraint of the system 0.01 0.000 0.000 <																	
Image: Constraint of the																	
Image: Constraint of the system 0.000 0.001 0.00 0.000 <																	
Image: Constraint of the system 0.000 0.01 0.00 0.000 <t< td=""><td rowspan="4"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
0.00 0.01 0.0 0.00 100.0 0.00 19.0 0.20 0.00 3.8 0.0000 0.0000 0.00 0.01 0.00 0.00 0.00 100.0 0.00 19.0 0.20 0.00 3.8 0.0000 0.0000 0.000 0.011 3.8 55.6 55.6 100.0 6.9 0.0 19.0 0.20 0.0 3.8 0.0000 1.000																	
0.00 0.01 3.8 55.6 55.6 100.0 6.9 0.0 19.0 0.20 0.0 3.8 0.0000 1.000																	
				0.00	0.01	0.0	0.0	0.0	100.0	0.0	0.0	19.0	0.20	0.0	3.8	0.0000	0.000
				0.00	0.01	3.8	55.6	55.6	100.0	6.9	0.0		0.20	0.0	3.8	0.0000	1.000
			∢														1

Darwin Scheduler


Scenario: F - 1	 Daily C 	lost:		75.()	s									
🚱 F - 1	Usage	Cost:		150	150.0										
🚊 💼 Pump Usage	Overal	Overall Energy Used: Overall Unit Energy Cost:			964.4059		vh/MG								
i≟; ime Details i⊒ ime Pumps	Overal				.8812	\$/	\$/MG								
	Results	Results Graph													
MP-4 Storage Peak Demands		Volume Pumped (Increme ntal) (MG)	Volume Pumped (Cumulati ve) (MG)	Water Power (kW)	Pump Efficiency (%)	Wire to Water Efficiency (%)	Motor Efficiency (%)	Wire Power (kW)	Energy Used (Increme ntal) (kWh)	Energy Used (Cumulati ve) (kWh)	Energy Price (\$/kWh)	Energy Cost (Increme ntal) (\$)	Energy Cost (Cumulati ve) (\$)	Cost per Unit Volume (\$/MG)	Relative Speed Factor (Energy Cost Engine)
		0.00	0.00	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.20	0.0	0.0	0.0000	0.000
		0.00	0.00	0.0	0.0	0.0		0.0	0.0	0.0	0.20	0.0	0.0	0.0000	0.000
		0.00	0.00	0.0		0.0		0.0	0.0	0.0	0.20	0.0	0.0		0.000
		0.00	0.00	0.0		0.0		0.0	0.0	0.0	0.20	0.0	0.0		0.000
		0.00	0.00	1.5		26.1		5.9	0.0	0.0	0.20	0.0	0.0		1.000
		0.00	0.00	2.7		41.7		6.4	5.9	5.9	0.20	1.2		476.2113	1.000
		0.00	0.01	3.4		51.1		6.7	6.4	12.3	0.20	1.3		290.9224	1.000
		0.01	0.01	0.0		0.0		0.0	6.7	19.0	0.20	1.3		231.3629	0.000
		0.00	0.01	0.0		0.0		0.0	0.0	19.0	0.20	0.0	3.8		0.000
		0.00	0.01	0.0		0.0		0.0	0.0	19.0	0.20	0.0	3.8		0.000
		0.00	0.01	0.0		0.0		0.0	0.0	19.0	0.20	0.0	3.8		0.000
		0.00	0.01	0.0		0.0		0.0	0.0	19.0	0.20	0.0	3.8		0.000
	•	0.00	0.01	3.8	55.6	55.6	100.0	6.9	0.0	19.0 III	0.20	0.0	3.8	0.0000	1.000

Case Study (Water Utility in UK)

- DMZ system
- 57 Ml/day
- 11 pump stations and 9 tanks
- Energy cost: £330K/year
- Recorded daily energy cost: £912
- Modeled daily energy cost: £923

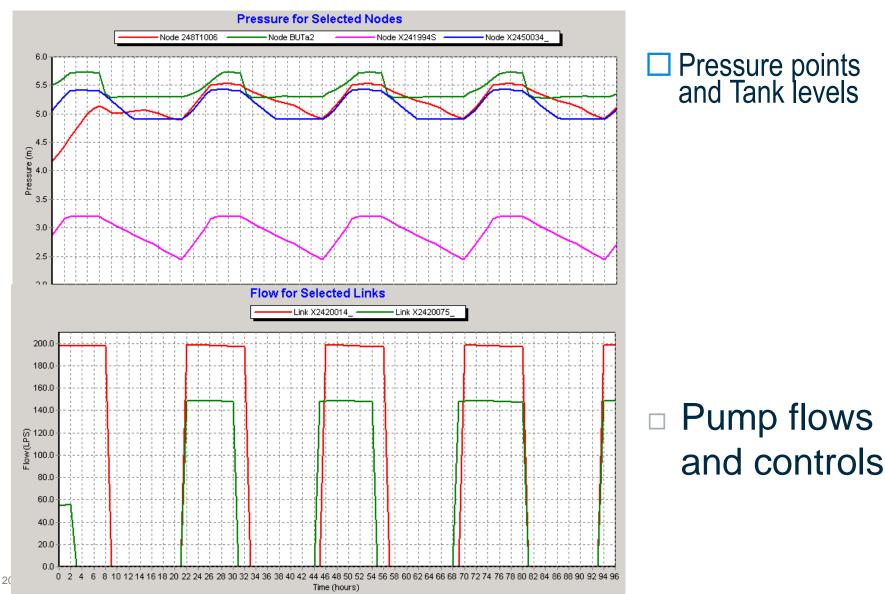
Electricity Tariff Pattern

Time

Pump Scheduling Optimization

Optimization criteria

- One hour control interval
- Tank minimum level is set to 20% of depth
- Tank maximum level is set to 90% of depth
- Meet minimum pressure requirements at PRVs and critical points
- Results converted to control rules, e.g.


Rule 100						
IF	SYSTEM	CLOCKTIN	ΛE	<=	8:00	AM
OR	SYSTEM	CLOCKTIN	ΛE	>=	10:00	PM
AND	TANK	BUTa2	LEVEL B	ELOW	5.73	
THEN	PUMP	PILWTH	STATUS	IS	OPEN	
ELSE	PUMP	PILWTH	STATUS	IS	CLOSED	

Energy Cost Comparison

Pump	Existing controls		Optimized controls	
	Pump utilization			
ID	(%)	Daily cost (£)	Pump utilization (%)	Daily cost (£)
X2420052_	100	181.99	100	181.73
X2420014_	40	142.11	41	120.51
X2420075_	42	201.95	37	141.19
X2410361_	50	31.99	42	22.65
X2419963_	50	31.99	42	22.65
X241998C_	26	7.92	31	5.18
X2450024_	40	37.35	21	13.87
PILWTH	82	236.19	40	98.33
NEWMRKT	23	111.63	22	88.98
Total $cost(f)$	(983.12	(695.10

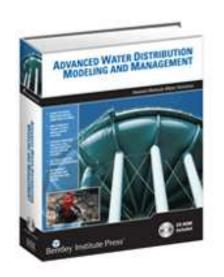
- Immediate saving is 100,000 £ (29% of original energy cost)
- By optimizing pumping hours and better supply from storage sources

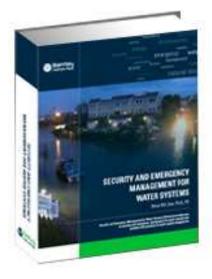
Optimized Pump Controls

49 | WWW.BENTLEY.COM | © 20

```
Bentley
```

Take Away Message


- Improving Efficiency is a part of a lifecycle asset management practice in Water Utilities and Consulting Ecosystem
- Integrated Geospatial, Hydraulic Modeling and Optimization technology can help:
 - Detecting leakage hotspots
 - Pipe renewal planning process
 - Pumping scheduling and optimal pressure and energy management (including CO2 footprint)


○ From 'dull pipes' towards <u>Smart Water Networks</u> for real-time modelling, decision making and emergency response

Contact Information and Resources

Email: <u>Slavco.Velickov@bentley.com</u>

www.bentley.com/water www.bentley.com/waterstories www.bentley.com/systemefficiency communities.bentley.com

