
From Point Cloud to City Model – The 3D Data Management Lifecycle GWF 2016 Workshop – 3DCityDB on Oracle

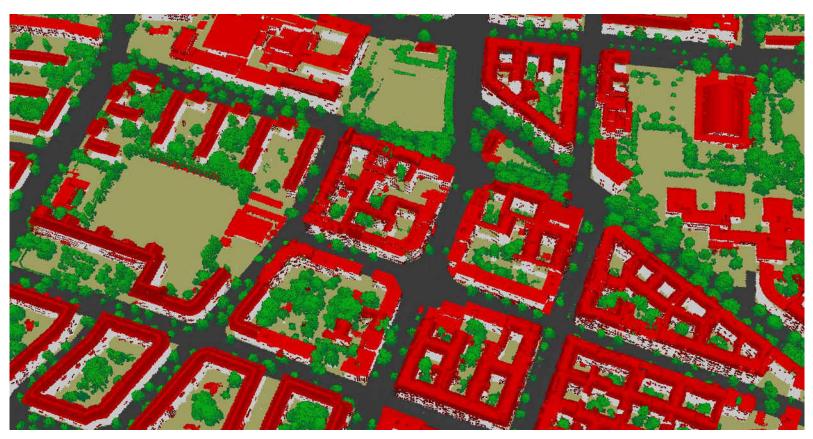
Hans Viehmann Product Manager EMEA ORACLE Corporation May 26, 2016

CityGML in Practice

Using 3DCityDB on Oracle for City Modeling

Agenda

- Hans Viehmann (Oracle)
 - From Point Cloud to City Model The 3D Data Management Lifecycle
 - Data Conflation, Processing, Publishing
- Stephan Plabst (M.O.S.S.)
 - Simplifying the Management of your 3D Data with Automatic and Scalable Workflows
 - Modeling, Maintenance, Change Detection
- Lutz Ross (virtualcitySYSTEMS)
 - CityGML-based SDIs Implementation requirements and examples
 - Best Practices and Visualization



City Modeling

- Many business cases have become economically viable
 - Cost of 3D data collection has gone down significantly
- Leading to large scale projects, sometimes country-wide initiatives
 - Eg. in Poland, the Netherlands (3D Pilot NL, AHN-2), Germany (AdV), UK, Ireland, ...
 - Using LiDAR or Photogrammetry for data acquisition
- In Europe partly driven by EU mandates (eg. noise emission)
 - Requiring 3D data for simulation
- Lots of use cases, eg. in Smart Cities track
 - City and urban planning, citizen participation, city marketing, ...
 - Users in Local Government, Telco, Utilities, Public Transport, Public Safety, ...

Visualization

Simple graphical representation – data, not information

Screenshot courtesy of Rico Richter, HPI

Hasso

Plattner

Institut

HPI

Modeling and CityGML Using the data requires objects

- Modeling required for any kind of analysis beyond visualization
 - Associating objects with geometry, topology, semantics, appearance, ...
- CityGML is established standard for this purpose
 - Information model to represent relevant 3D urban objects
 - Defining classes and relations for these objects
 - XML-based format to exchange and store data (GML3-based application schema)
 - Standardized by OGC, currently in version 2.0.0
 - Can be used to derive logical data model in databases

The CityGML Database 3D City DB

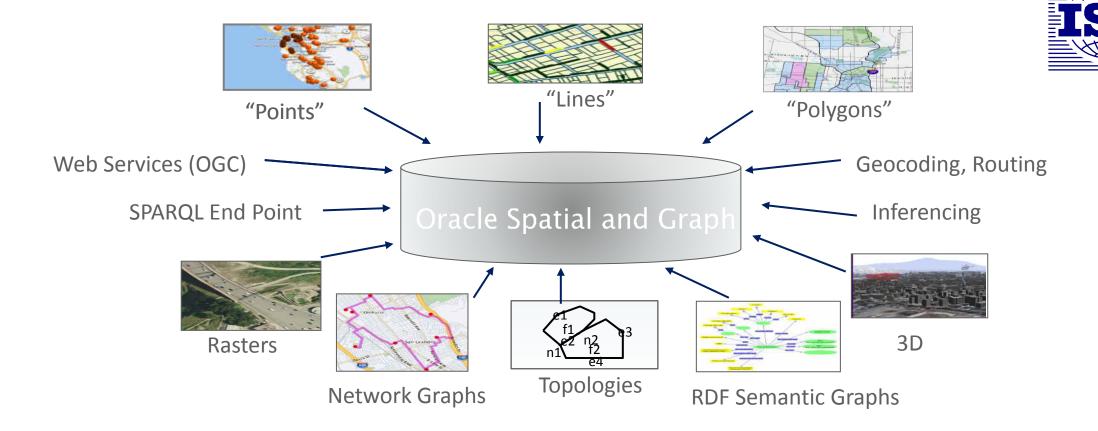

3DCityDB Open source data model - www.3dcitydb.org

- Semantically rich, hierarchically structured model
- Five different Levels of Detail (LODs), including textures and facades
- Representation of generic and prototypical 3D objects
- Free, also recursive aggregation of geo objects
- Complex digital terrain models (DTMs)
- Management of large aerial photographs using SDO_GEORASTER objects
- Version and history management
- Matching/merging of building features
- Works with Oracle Spatial and Graph 10gR2, 11g and 12c

berlin

City of Berlin – 3D City Model Implemented on Oracle with 3DCityDB

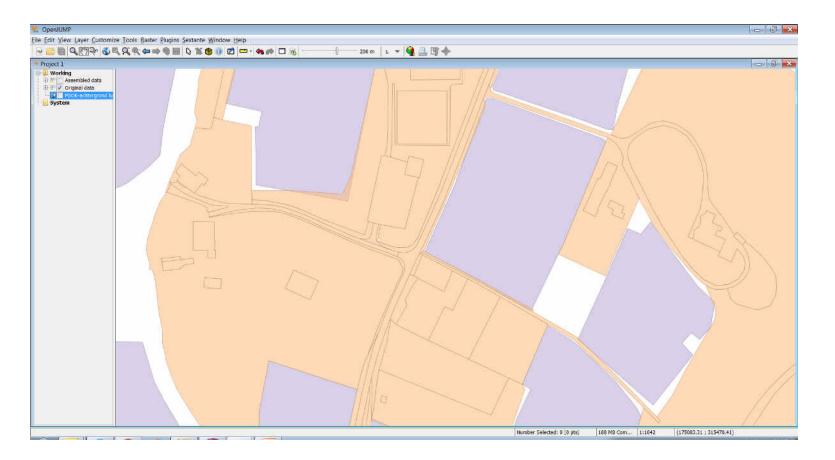
- 550000 buildings, reconstructed from 2D cadastre and LIDAR data
- Textures extracted from oblique aerial photography
- 2012 Oracle Spatial Excellence Award


Images courtesy of: TU Berlin, Institute for Geodesy and Geoinformation

Why use a database here? Requires a spatially enabled database

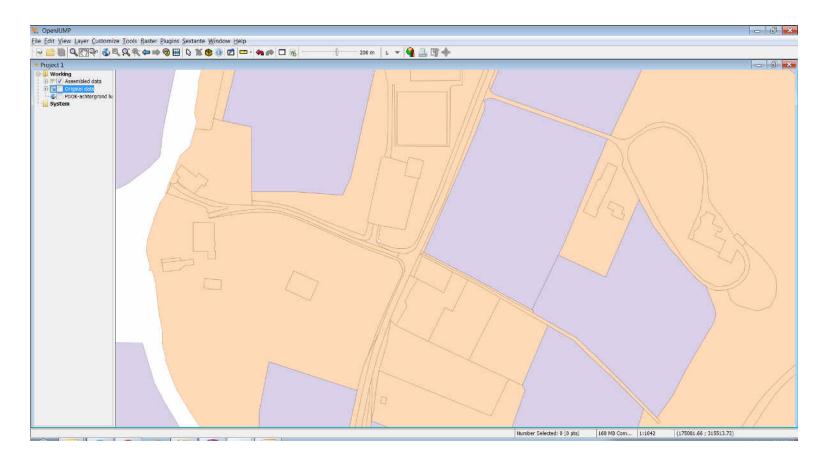
- Data integration with other sources
 - Online availability, including history and metadata
 - Geo-referenced imagery, existing 3D structures, attributes,...
- Fast access to arbitrary part of data set
 - For processing or visualization
- General benefits of mature DBMS
 - Information lifecycle management data administration, tuning
 - Scaleability multi-processor support, clustering, ...
 - Executing data-intense logic where the data resides

Oracle Database with Spatial and Graph Option

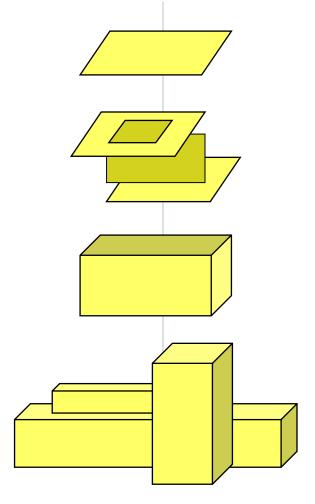


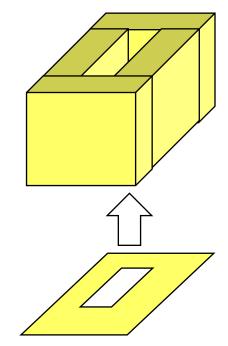
Spatial Processing in BGT BRAVO Project

Automating data conflation and quality assurance



Spatial Processing in BGT BRAVO Project


Automating data conflation and quality assurance


Creating a 3D model – elementary building blocks

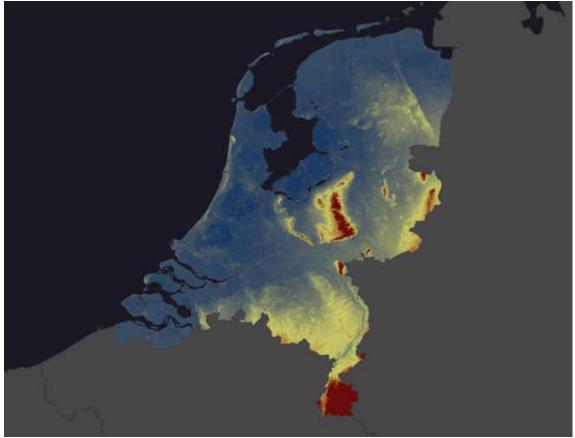
- Simple Surfaces
 - Face = 3D Polygon
- Composite Surface
 - Multiple connected faces
- Simple Solid
 - Closed composite surface
- Composite Solid
 - Multiple connected simple solids

• Extrusion

Generating solids from 2D polygons

Other relevant database object types

- TINs (SDO_TIN)
 - Separating physical storage from logical structure to support huge datasets
 - Extraction, conversion to geometry
 - Compression for efficient storage
- Point Clouds (SDO_PC)
 - Separating physical storage from logical structure to support huge datasets
 - Extraction, conversion to geometry
 - Processing, eg. create TIN, generate contour lines


Georeferenced Raster (SDO_GEORASTER)

- Separating physical storage from logical structure to support huge datasets
- Supporting any kind of gridded data
- Ingesting lots of formats through GDAL
- Image processing, mosaicking
- Pyramiding for fast rendering
- Raster algebra (for NDVI, TCT, or bespoke algorithms) and analytics

ORACLE[®]

Dutch eScience research project on Massive Point Clouds Project Consortium, led by Peter v. Oosterom, TU Delft

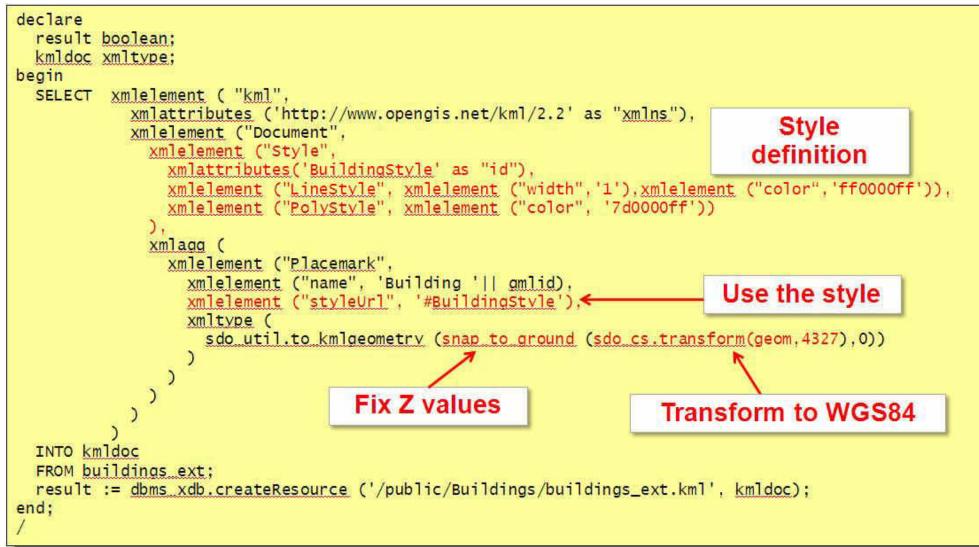
- TU Delft
- NLeSC (Netherlands eScience Center)
- Oracle Corporation (NEDC)
- Rijkswaterstraat
- Fugro B.V.
- AHN-2 Dataset of the entire country
- 6 -10 pts/m² → <u>640 billion pts</u>
- 60,185 LAZ files, 987 GB in total, <u>11.64 TB</u> uncompressed

Scalability testing with AHN-2 dataset Performance and best practices

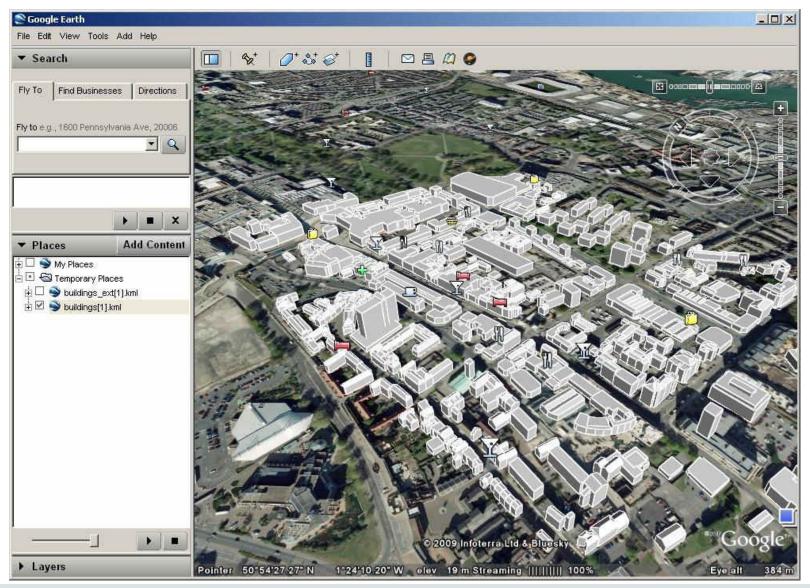
- Testing on Oracle Engineered System (Exadata X4-2)
- Loading all 640bn points from LAZ files in 4:39h
- Using Hybrid Columnar Compression
 - Requires 2.24TB of storage in database, compared to 0.97TB in LAZ files or 12TB (uncompressed) LAS
- Massive parallelization of processing
- Even in single user database environment usually outperforms file system
- Available as Cloud Service

How can this be used?

- Derivation of 3D models
 - Classification, conflation with data from other sources
- Web-based or service-based rendering
 - Visual inspection, etc.
 - using the full resolution of the dataset or parts thereof (pyramiding)
- Large scale data dissemination
- In-database processing and analytics, specifically change detection
 - Change detection in multi-temporal point clouds
 - Particularly for buildings and vegetation



Visualization and interactive analysis



Publish KML in the XDB Repository

Render in KML Viewer

ORACLE[®]

Publish as Linked Data

Using RDF Graph support in Oracle Spatial and Graph

- Support for RDF, OWL, SPARQL, ... is integral part of database
- Using database as triple store
- Allowing RDF views on relational tables
- Standards-compliant SPARQL endpoint, GeoSPARQL support
- SPARQL queries in SQL possible

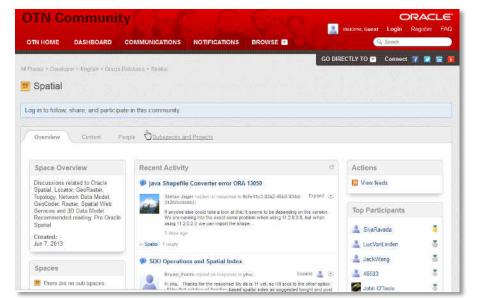
ORACLE

• Inferencing engine inside database

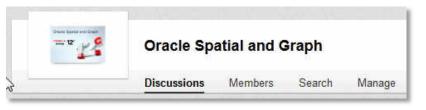
Semantic Modeling

Annotation Properties Individual Active Ontology	w semanticseb bro Example owb GWLViz DL Query OntoG Entities	iraf SPARQL Query Ontology Differences Classes Object Properties	Search for entry Data Pro	operties	
Class hierarchy (inferred) Class hierarchy	Members list (inferred) Members list Members list	Annotations Usage Annotationss John			
Class here thy Thing Thing A B	Members list-john THTC X John Mary				
- • c		Description John (IEV) Tross Thing (IEV) Same Individual & Different Individuals (IEV)	Broperty assertions: John Bijec property assertions: O TriendOF Mary Data property assertions Avgathe abject property assertions Headthey data property assertions		
			Annual Chine Addition (Chinese Chinese	e o Connect	to Oracle
				Oracle Database Oracle NoS	QL Database
To use the reasoner click Reasoner->Start reasoner				Database Host:	localhost
				SID:	orcl
	F	Protégé		SID: Port: User Name:	1521

Summary Managing 3D Data in 3DCityDB on Oracle


- "live" access to 3D data for visualization and analysis
- Integrated management of all kinds of 2D and 3D data
 Single source of truth for geospatial and associated attribute data
- Large scale "in-situ" processing

- Object recognition, data analysis, ...
- Management and publishing of data and metadata
 - Making data useable through open standards
- Taking advantage of cost saving database functionality - Compression, information lifecycle management, ...



More resources

- Further information on oracle.com
 - www.oracle.com/goto/spatial
- Blogs
 - https://blogs.oracle.com/oraclespatial
- Developer forums on OTN

- https://community.oracle.com/community/database/oracle-database-options/spatial
- LinkedIn community
 - "Oracle Spatial and Graph" group
- Google+ community
 - "Oracle Spatial and Graph SIG"

Integrated Cloud Applications & Platform Services

